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Integrated analysis of the RNA-Seq data of liver hepatocellular carcinoma 
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The present study aimed to explore the genetic changes involved in the liver hepatocellular carcinoma (HCC) develop-
ment. The RNA-Seq data of 212 HCC tissue samples and 50 normal tissue samples were downloaded using TCGA-Assem-
bler. A total of 4 subgroups were obtained, and 4167, 6279, 5379, and 2548 DEGs were screened in group 1, group 2, group 
3, and group 4, respectively. Enrichment analysis found that cell cycle, metabolism, and translation related terms were the 
most significantly changed functions and pathways. There were 454 genes (1114 pairs), 803 genes (722 pairs), and 788 genes 
(724 pairs), separately interacted in the condition specific PPI network of group 1, 2, 3, and 4, with MMP2, ATNXN1, F2, 
and HDAC1 as the hub genes. What’s more, using these genes, total 7, 20, 198, and 1 subtype related miRNAs; 35, 50, 47, and 
17 subtype related TFs; 1, 1, 0, and 2 subtype related drugs were screened in group 1, 2, 3, and 4, respectively. The integrated 
biological analysis on RNA-Seq data provided substantial of bio-molecular related to the HCC development. miR-147b, SP1, 
and Riboflavin were the subtype-related regulator/drug for HCC. The study about the big data of HCC RNA-Seq data reveals 
the intrinsic gene expression pattern of the tumor, which provides a novel perspective to understand the heterogeneity of 
pathogenesis in HCC tumorigenesis. 
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Among all kinds of primary liver cancers, there are approx-
imately 85–90% liver hepatocellular carcinoma (HCC) cases 
[1]. HCC is the 6th most common worldwide cancer, ranked 
as the most rapidly increasing reason of cancer-related 
death in the United States [2]. Hepatitis B/C infection, 
non-alcoholic steatohepatitis, alcoholic liver injury, heredi-
tary metabolic diseases, and environmental carcinogens are 
the major risk factors for HCC [3]. HCC is usually detected 
at the time when fewer therapies are available [4], and there is 
currently no effective cure for it, specifically in the later stage. 
Because of limited biopsies at the time of HCC diagnosis, 
biomarkers for patient classification as well as treatments are 
limited [5, 6]. Further, majority of HCC diagnoses are now 
based only on radiological diagnostic criteria [7, 8]. There-
fore, it is urgently needed to get a better understanding of 
HCC development for better diagnosis and treatments.

High-throughput cDNA sequencing (RNA-Seq) can 
provide gene expression measurement and has been regarded 
as an attractive approach capable to alternate microarrays 
in the analyzing of transcriptome in a comprehensive and 
unbiased manner [9]. RNA-Seq data are of high reproduc-

tion, with few systemic differences among all technical repli-
cates [10]. RNA-Seq has been used as a powerful source in 
the cancer studies, for instance, Berger et al.  [11] applied 
RNA-seq for melanoma expression profiling, paving a novel 
avenue for cancer-target discovery. In terms of HCC, Lin et 
al [12] investigated the key miRNAs in HCC using the small 
RNA-Seq data, and Huang et al revealed complex transcript 
patterns in HBV-related HCC samples trough the RNA-Seq 
data [13]. However, the comprehensive knowledge about the 
genetic changes in HCC remains to be explored.

To have a more in-depth knowledge of the mechanism 
of HCC development, Yang et al used the RNA-seq data 
to identify the critical genes by constructing an interac-
tion network and module analysis [14]. In this study, the 
RNA-Seq data of 212 HCC tissue samples and 50 normal 
tissue samples were downloaded. Differentially expressed 
genes (DEGs) between HCC samples and normal samples 
were screened and then they were used for the subgroup 
analysis of all samples. The interacted genes with DEGs in 
each subgroup were collected for the construction of condi-
tion specific protein-protein interaction (PPI) network. The 
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regulators (miRNAs and transcript factors) and related drugs 
of DEGs were also identified, followed by Fisher t test for the 
subtype related factor selection.

Materials and methods

Data preprocessing and subgroup classification. All the 
RNASeqV2 data of HCC were downloaded using TCGA-
Assembler, including the RPKM (reads per kilobase of exonic 
sequence per million of total reads sequenced) values of all 
genes. RPKM is the ratio of reads mapped to genes to reads 
mapped to genome, and it is a representative value for the 
expression values of genes. The RPKM values were normalized 
via the TCC package [15]. Total of 262 samples, containing 
212 HCC tissue samples and 50 normal tissue samples were 
obtained. After the supplementation of the missing value 
using 1, the data were conducted log2 transformation.

NMF [16] was utilized for the subgroup classification of all 
the cancer samples. Cophenetic correlation coefficient [17] 
was applied for the optimizing of k value. The value range 
of cophenetic correlation coefficient is 0–1, and the k value 
under its highest value is recognized as the ideal k value.

Screening of DEGs. SAM algorithm [18] was used for 
the screening of DEGs. To reduce the false positive rate, the 
genes with adjusted p value <0.05 (Bonferroni adjustment), 
and |log2 FC (fold change)| <1 were considered as the DEGs 
between cancer and control samples. Common DEGs of the 
4 subgroups were firstly collected, and the specific DEGs in 
each subgroup were obtained after removing the common 
DEGsEnrichment analysis of DEGs. TOPPGENE is an 
online tool (https://toppgene.cchmc.org/prioritization.jsp) 
for prioritizing or ranking the candidate genes based on 
functional similarity to training gene list [19]. Here, to enrich 

the dysfunctional terms (function and pathway) caused by 
the DEGs in HCC samples, TOPPGENE was utilized. False 
discovery rate (FDR) <0.05 was set as the threshold.

Interaction network analysis. For the analysis of the 
interactions between genes (PPI, protein-protein interac-
tion), HPRD (Human Protein Reference Database, http://
hprd.org/) database [6] was retrieved for the gene pairs of 
the corresponding proteins. Further, the Pearson correlation 
coefficient of a gene pair under certain condition was calcu-
lated based on their expression value, and the pair will be 
considered as condition specific interacting pair if the coeffi-
cient is larger than 0.5.

cGRNB (Combinatorial Gene Regulation Networks based 
on user-uploaded gene expression datasets, http://www.scbit.
org/cgrnb) database is usually used for studying the complex 
regulatory relationships, including the miRNA-gene, 
transcription factor (TF)-gene, and TF-miRNA relationships 
[20, 21]. The regulations of miRNA to genes were originally 
obtained from starBase database, and total 197906 regulatory 
pairs were collected (669 miRNA and 68646 gens) under the 
criteria of microRNA readNum > 0 and biological complexity 
>1. The regulations of TF to genes were obtained based on 
the USSC sequence information, and total 210637 regulatory 
pairs were collected (207 TF and 16862 gens).

The interactions between the FDA approved drugs and 
genes were downloaded from DrugBank (http://www.
drugbank.ca/), and total 6108 interaction pairs including 
1348 drugs and 1353 target genes were obtained.

Screening of subtype related miRNA/TF/drug. The 
overlapping significance between DEGs (gene set N) in a 
subgroup and target genes (gene set Mi) of selected miRNA/
TF/drug (i) were detected using Fisher test [22]. The cut-off 
threshold was set as p<0.05, and if there is significant 
overlapping, the corresponding gene associated miRNAs/
TFs/drugs were considered as subtype related. The p value 
was computed via the following formula:

a + b
a

c + d
c

n
a + c

p=  (1)

Whereas “a” means genes are included in both Mi and N, 
“d” means genes are included in neither Mi nor N, “b” means 
the genes are only included in Mi, and “c” means the genes 
are only included in N.

Results

Data preprocessing and subgroup classification. The 
distribution of expression values is listed in Figure 1. After 
the processing, the top 1500 genes with higher variation 
coefficient were used for the subgroup classification. The 
cophenetic correlation coefficient was the highest when k=4, 

Figure 1. Distributions of expression values in the liver hepatocellular 
RNA-seq samples. The total 212 samples are shown in x axis, and the 
transcriptional levels of the whole genome of the samples are shown in 
y axis.
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so total 4 subgroups were screened out: group 1, 63 samples; 
group 2, 40 samples; group 3, 52 samples; and group 4, 57 
samples (Figure 2). 

DEG screening. SAM algorithm was applied for the 
screening of DEGs, and in all, the number of DEGs in group 
1, group 2, group 3, and group 4 was 4167, 6279, 5379, and 
2548 respectively. The overlapping genes in 2 subgroups or 
more groups were collected as the final common DEGs sets, 
comprising 6836 genes (Figure 3). The DEGs were ranked 

based on their adjusted p values, and the heatmap of the top 
50 DEGs was drawn (Figure 4). The common DEGs were 
removed from the DEGs in each subgroup to identify the 
subtype related miRNA/TF/drugs.

Enrichment analysis. Common DEGs and DEGs in the 
4 subgroups were subjected to TOPPGENE for the enrich-
ment analysis. Functional enrichment was conducted from 
there aspects: molecular function, cellular component, and 
biological progress. 

Figure 2. Subgroup classification analyses. A, the evaluation of k value; B, the matrixes of the subgroups; C, the expression heatmap of key genes in the 
subgroups.
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the 4 subgroups were identified by calculating their degrees. 
The top 10 genes with highest degrees in each subgroup are 
displayed in Suppl. Table 2. It is observed in the table that the 
important hub genes in one subgroup were not so impor-
tant in other groups, such as the hub gene MMP2 in group 1, 
ATNXN1 in group 2, F2 in groups 3, and HDAC1 in group 4.

Subtype related miRNA/TF/drug. The regulators 
(miRNA/TF) and related drugs of DEGs in each group were 
performed by Fisher t test. Total 5, 5, 5, and 1 subtype related 
miRNAs; 5, 5, 4, and 5 subtype related TFs; 5, 6, 3, and 2 
subtype related drugs were screened in group 1, 2, 3, and 
4, respectively (Suppl. Table 3). Among all subtype specific 
factors, miR-30a and SP1 were group 2 specified, while 
Dactinomycin was group 4 specified.

Discussion

HCC is a worldwide social and clinical issue, and the 
biomarkers for its diagnosis and classification remain limited. 
The RNA-Seq data of the HCC tissue samples and corre-
sponding normal tissue samples were downloaded to explore 
the underlying mechanism of HCC. The samples were firstly 
classified into 4 subgroups based on gene expression levels, 
and 4167, 6279, 5379, and 2548 DEGs were screened in group 
1, group 2, group 3, and group 4, respectively. Cell cycle, 
metabolism, and translation related functions and pathways 
were the main terms enriched by the DEGs. The condition 
specific PPI network of group 1, 2, 3, and 4 was composed 
of 579 genes (454 pairs), 1140 genes (1114 pairs), 803 genes 
(722 pairs), and 788 genes (724 pairs), separately. MMP2 
and HDAC1 was the hub gene the subgroup network, while, 

The most significant enriched terms of the DEGs in the 4 
subgroups are shown in Suppl. Table 1. For DEGs in group 
1 and 2, similar terms were enriched, and they were cell 
cycle related functions and metabolism related pathways; for 
DEGs in group 3, cell cycle functions, acid catabolic related 
processes, and mRNA processing pathways were enriched; for 
DEGs in group 4, cell cycle functions, RNA processing related 
processes, and translation related pathways were enriched.

The function and pathway enrichment result is displayed 
in Figure 5. The common DEGs were remarkably enriched in 
transcription and translation related terms. The most signifi-
cantly enriched cellular component terms included nuclear 
binding, RNA binding, nucleoplasm, and nucleolus; the most 
significantly enriched biological progress terms included 
RNA processing, mRNA processing, RNA splicing, and 
mRNA metabolic process; the most significantly enriched 
pathways included spliceosome pathway, ribosome pathway, 
pyrimidine metabolism pathway, and purine metabolism 
pathway. No molecular function terms were enriched.

Condition specific protein-protein interaction network. 
For the DEGs of the 4 subgroups, 11676 interaction pairs 
were obtained basing on the information from HPRD 
database. The interacting gene pairs were then screened by 
calculating their Pearson correlation coefficients, and those 
with the coefficient larger than 0.5 were considered as the 
condition specific pairs. The condition specific PPI network 
of group 1, 2, 3, and 4 was composed of 579 (454 pairs), 1140 
genes (1114 pairs), 803 genes (722 pairs), and 788 genes (724 
pairs), separately.

Hub genes in the PPI network are usually the disease 
related genes, thus, the hub genes in the PPI networks of 

Figure 3. The Venn diagram of differentially expressed 
genes in the four subgroups.

Figure 4. The heatmap of top 50 differentially expressed genes. The 50 genes are shown in 
y axis, and samples in four subgroups are shown in x axis.
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miR-147b was found to be the subtype specific regulator, SP1 
was the specific TF, and Riboflavin was a subtype-related drug.

MMP (Matrix metalloproteinase) can degrade the compo-
nents of extracellular matrix. MMP2 is a master regulator in 
tumor metastasis, and its higher levels are important for the 
invasions and metastasis of HCC [23]. It is reported that there 
was a remarkable overexpression in HCC tissues comparing 
to the adjacent tissues [24], an indicator for the aggressive-
ness of HCC cells [25]. What’s more, the high expression of 
MMP2 is related to tumor aggressiveness [26], suggesting 
that samples in group 1 might be highly aggressive HCC. 
TIMP1, the gene interacted with MMP2 in the PPI network, 
functions as an endogenous inhibitor of MMP. McKenna et 
al found that the MMP2:TIMP1 expression increased at the 
margin tissues than HCC tissues [27]. Therefore, we inferred 
that the MMP2-TIMP1 variation is a contributor factor for 
group 1 HCC samples.

HDACs (histone deacetylases) are known to play vital 
roles in regulating cancer development and progression [28]. 
The expression of HDAC1 is reported to be overexpressed 
in HCC, involved in HCC development through systemically 
regulate the mitotic effectors [29]. Therefore, we inferred that 
in samples of group 4, cell cycle was significantly changed.

miR-147, induced by different TLR (toll like receptor) 
agonists, is the murine homologue of human miR-147b [30]. 
It functions to negatively regulate the LPS-elicited signaling 
events in the murine macrophages, and its inhibition signifi-
cantly increased cytokine expression with the stimulation of 
TLR [31]. TLRs paly various of function in the liver, and it is 
reported that there is an association between TLR2/9 single 
nucleotide polymorphisms and the occurrence of HCC [32]. 

miR-147 has been identified to be differentially expression in 
recurrent HCC patients comparing with those with no recur-
rence [33]. As miR-147b was subtype related we inferred that 
samples in group 3 might be recurrent HCC.

Specificity protein 1 (SP1) is a member of ubiquitously 
expressed TF family, regulating a larger number of tissue 
specific genes [34]. The promoter hypomethylation can 
induce histone hyperacetylation and increase the SP1 binding 
as well subsequent transactivation, which were associated 
with poor prognosis of HCC [35]. SP-1 has also been linked to 
the regulation of invasion and metastasis in liver cancer [36]. 
Moreover, the HDCA4/Sp1/miR-200a regulatory network is 
recommended as a potential therapeutic target for the HCC 
treatment, and the network enhances the proliferation and 
migration of the cancer cells [37]. Thus, it is assumed that in 
the group 2 samples, the proliferation and migration might 
be disrupted.

Riboflavin, playing a vital role in many metabolic 
reactions, is essential for the normal cellular growth and 
function [38]. Riboflavin will be converted into flavocoen-
zymes to realize its biological activity [39]. Riboflavin carrier 
protein is a growth and development protein, the serum level 
of which was elevated in HCC [40]. HepG hepatocarcinoma 
cells have a high demand for riboflavin, and the marginally 
low riboflavin is shown to induce liver cell stress rapidly [41].

In conclusion, the integrated biological analysis on RNA-Seq 
data provided substantial information for the mechanism 
investigation of HCC. The study about the big data of HCC 
RNA-Seq data reveals the intrinsic gene expression pattern 
of the tumor, which provide a novel perspective to under-
stand heterogeneity of pathogenesis in HCC tumorigenesis.

Figure 5. Significantly enriched functional and pathway terms of common DEGs. CC, cellular component; BP, biology process; KEGG, Kyoto Encyclo-
pedia of Genes and Genomes.
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Supplementary information is available in the online version 
of the paper.
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