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Testicular germ cell tumors (TGCTs) mostly affect young men, but fortunately belong to well
curable solid tumors. Today, different treatment strategies are applied reaching excellent out-comes
and mtroduction of alternative approach of patient active survilence or adjuvant chemotherapy after
orchiectomy decreases number of unnecessary toxic treatments of young patients. Also for
relapsing patients, salvage therapy offers high survival rates. However, small percentage of
affected young men do not respond to conventional therapy regimen due to intrinsic or acquired
therapy resistance. For precise watching of patients during active surveillance, for stratification of
patients due to their prognosis, and detection of therapy resistance and early relaps before treatment
mitiation, reliable molecular biomarkers and diagnostic tools replacing conventional approaches are
stil needed. Complex understanding of disease development and progression as well as
mechanisms of chemoresistance and their epigenetic or chronobiological regulation pre-requisite
successfull search for such novel biomarkers. In this review, we aimed to highlight the importance
of crosstalk of different regulatory mechanisms and therr key players affecting treatment response,
and focus on their potential as novel molecular biomarkers and/or druggable targets.

Key words: testicular germ cell tumor, cisplatin resistance, DNA damage and repair, epigenetics,
hypoxia, chronobiology

Testicular germ cell tumors (TGCTs) are the most common form of malignant solid tumors in
young adult men and their incidence is continuosly increasing. In FEurope, the most affected
individuals  are  young Caucasians, mostly from Scandinavian countries, and increasing trends are
still observed [1]. About 23,000 new cases are predicted to occur in Europe by 2025 [2]. In the
United States, the biggest increase n the ncidence of TGCT was observed in Hispanic population
[3]. Racial differences in predisposition to TGCT have been identified; white men show the highest
risk, while African or Asian men have lower risk of disease development [4].

TGCTs account for ~98% of all testicular malignancies exerting wide histological heterogeneity,
mostly attributed to pluripotency of the originating germ cell line [5]. TGCTs derived from arrested,

improperly developing fetal gonocytes accumulate oncogenic mutations, become germ cell
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neoplasia in situ (GCNIS) in childhood and adolescence, and can turn to mnvasive TGCT i the
young adults [6]. Based on histological type, TGCTs are generally classified into seminoma (SE)
and non-seminomatous tumors (NSTs) [5, 7]. SE are homogenous and develop most frequently at
the age of 35-39 years, while NSTs at younger age of 25-29 years. NSTs are usually heterogeneous
due to dysregulated differentiation and generally more aggressive, containing different histological
tumor components. The undifferentiated embryonal carcmoma (EC) cells show pluripotential stem
cell character and can differentiate into either extra-embryonal tissues like choriocarcinoma (CC),
yolk sac tumor (YST) or somatic derivatives like teratoma (TE) [5, 8]. Differentiated EC cells lose
expression of the pluripotency factor OCT4, the unique embryonal transcription factor of TGCTs
[9]. The expression of OCT4 and other pluripotency markers, such as SOX2 and NANOG [10,11]
are strictly limited to the GCNIS and undifferentiated EC cells, while = absent in differentiated
tissues like YST, CC and TE [12, 13]. Therefore, OCT4 is considered a suitable diagnostic marker
recognizing EC, seminoma and early pre-invasive GCNIS lesions [14].

Clinical diagnosis of TGCT is usually based on physical exammation, testicular ultrasound and
determination of serum tumor markers such as alpha-feto-protein (AFP), human chorionic
gonadotropin (hCG) and lactate dehydrogenase (LDH). Tumor staging and histology are confirmed
by orchiectomy and initial treatment is designed. Most patients are diagnosed with localized disease
(>80% of SEs and >60% of NSTs) presenting clinical stage 1 (CSI), localized in testicle with no
evidence of distant metastases. After orchiectomy, active surveillance (AS), adjuvant chemotherapy
or radiotherapy and primary retroperitoneal lymphadenectomy managemenmt approach are usually
proposed [15, 16]. Today, AS, based on close watching of the patients and monitoring of tumor
markers [17], represents an accepted alternative to radiotherapy and valid management option for
patients with CSI seminoma as well as non-seminomas. This approach saves significant percentage
of young patients from acute and/or chronic toxicity related to adjuvant chemotherapy. Patients with
diseases progression can be effectively treated with chemotherapy. For relapsing patients, salvage
therapy offers excellent treatment outcomes [17].

In contrast to majority of other solid malignancies, TGCTs are highly sensitive to genotoxic
chemotherapy, especially to cisplatin (CDDP). Several efficient chemotherapy regimens have been
developed based on combination of CDDP with ifosfamide, etoposide, vinblastine, paclitaxel or
more recently gemcitabine [18]. The use of conventional chemotherapy and surgery provides an
outstanding five-year survival rate (95.3%), even for patients diagnosed with distant metastases
(73.7%) [19-21]. However, the relapse rate for patients with seminoma is around 15-20% and for
low-risk non-seminoma patients approximately 20%, which may increase to up to 50% when there

is lymphovascular invasion (LVI) in the primary tumor [15, 22]. These patients experience
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recurrence and can develop CDDP resistance resulting in unfavorable prognosis [23].
Approximately 5% of all TGCT patients and 10-20% of patients with dissemmnated disease are
chemoresistant to CDDP and do not achieve a durable complete remission [24, 25]. Patients who
fail to achieve remission after either high-dose chemotherapy or second-line salvage therapy have
an extremely poor prognosis, and the vast majority eventually die of the disease [26]. CDDP
chemotherapy can trigger therapy-induced resistance, late toxicity and associates with
complications and secondary side effects including infertility, cardiovascular = disease,
hypogonadism, chronic neurotoxicity, hearing loss, renal function impairment, pulmonary fibrosis,
secondary neoplasms and psychosocial and mental problems [27].

To identify the optimal treatment regimen for individual TGCT patients, the currently available
clinical risk stratification systems are considered not sophisticated enough to truly distinguish
TGCT patients with excellent and poor treatment outcomes. According to statistics and
International Germ Cell Consensus Classification (IGCCC) (1997), 55% of patients are expected to
be chemotherapy-resistant and 45% of patients are expected to respond standard CDDP therapy
[28]. However, such stratification is not possible upfront at the time of diagnosis.

It is therefore crucial to extend present knowledge of TGCT biology to develop combined clinico-
biological risk stratification algorithms, improved panels of biomarkers and targets for the
development of novel therapeutic agents and regimens for TGCT patients, especially for precise
watching of patients during active survillence and stratification due to risk of relaps and therapy
resistance.

DNA damge and response in cisplatin sensitivity

Due to very good responsiveness to CDDP treatment even in the late phase disease [29], TGCTs
serve as an excellent’ model system for studying the molecular mechanisms associated with
chemosensitivity and resistance. However, novel diagnostic, prognostic and therapeutic approaches
are not extensively applied due to lack of novel biomarkers and druggable targets. Consequently,
patients refractory to standard chemotherapy lack the possibility to receive novel effective
treatments and therr prognosis is unsatisfactory [30]. Understanding mechanisms responsible for
chemoresistance might disclose novel important biomarkers and potentially offer new therapeutical
targets.

Chemoresistance can arise from reduced CDDP uptake, increased eflux, its inactivation by
mtracellular antioxidants, and increased DNA repair capacity [31]. An impressive CDDP response
rates have been linked to an intrinsic hypersensitivity to DNA damaging agents, as observed in
several human EC lines derived from TGCT [32] and strong correlation with the expression of

OCT4, SOX2 and NANOG pluripotency factors. OCT4 expressed in embryonic stem cells controls
3
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their survival and pluripotency by cooperating with different transcription factors such as SOX2
[33]. Loss of OCT4 expression leads to CDDP resistance development [34].

In general, somatic cancers’ resistance to genotoxic chemotherapy associates with accumulated
mutations in DNA damage response (DDR) pathways, mostly in the 7P53 gene [35]. In response to
chemotherapeutic drugs, the DDR is triggered by early phosphorylation-driven signaling cascades
followed by a delayed response and induction of CDK (cyclin-dependent kinase) inhibitors for
prolonged cell cycle arrest [36]. The cytotoxic effect of CDDP is triggered by mtra- and inter-strand
platnum-DNA adducts and DNA-protein crosslinks that form on DNA, such as Pt-GpG adducts
[24], promoting the apoptotic pathways [37]. DDR mechanisms can repair DNA lesions via
different DNA repair pathways, represented by six major classes of repair factors: (1) structure-
specific nucleases, which recognize and incise specific DNA structures, (2) translesion DNA
synthesis, (TLS) polymerases, error-prone polymerases that are able to tolerate DNA damage in the
template DNA strand, (3) homologous recombination (HR), (4) mismatch repair (MMR), (5)
nucleotide excision repair (NER), and (6) DNA damage response and repair pathway that is
defective in patients suffering from devastating genetic disease, known as Fanconi anemia pathway
(FA) [38] (Figure 1). NER represents the main defensive barrier against DNA damage [39] and a
major repair system for chemo- as well as radiotherapy-induced DNA damage [40]. Therefore, the
status of NER is a critical indicator of the CDDP chemotherapy outcome.

NER and cisplatin resistance biomarkers

NER represents a complex repair process carried out by seven xeroderma pigmentosum (XP)
proteins (from XPA to XPQG) and approximately two dozens of non-XP proteins [41]. NER works
via two pathways: global genome repair (GGR) mvolved in injury repair for any genomic sequence,
mportant to prevent carcinogenesis and transcription-coupled reparr (TCR) [42] responsible for
repair of the DNA  damage of actively transcribed chains, potentially associated with tumor
chemosensitivity.

Initial steps m NER mvolve DNA damage recognition and verification. Proteins of XPC
complementation group and its accessory subunits have been identified as protein complexes
mvolved in recognizing DNA lesions and consequent recrutment of other repair proteins [43]. XPA
protein group is mvolved m crosstalk of GGR and TCR pathways [44] and neither GGR nor TCR
are initiated in the absence of XPA. It has been shown that XPA binds to the damaged duplex DNA
and recruits a heterodimer endonuclease complex consisting of ERCC1 (excision repair cross-
complementation group 1) and XPF that cleaves the damaged strand contributing to the assembly of
downstream NER complexes [45]. ERCC1 subunit mediates interaction of XPA with this nuclease

complex, which is highly specific and essential for NER. Due to fact that no other proteins in the
4



148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

cell can compensate the loss of XPA, the NER capacity can attractively be targeted via XPA.
Appart from ERCC1 and XPF, XPA interacts with many other NER proteins, and is considered as a
key scaffold for this repair pathway [46]. Another NER interacting partners of XPA include XPE,
TFIIH (transcription factor II H), RPA (replication protein A) and PCNA (proliferating cellular
nuclear antigen) (Figure 1). Besides the proteins directly involved in NER, XPA is also known to
interact with other involved proteins, including ATR (ataxia telangiectasia and Rad3-related) kinase
and PARP-1 (polyADP-ribose] polymerase 1). XPA is therefore considered one of the key rate-
limiting factors of the cellular NER capacity.

TGCT cell lines have been shown to express relatively low amounts of XPA proten. This low
expression was associated with CDDP hypersensitivity and reduced NER' capacity [47]. On
contrary, overexpression of XPA protein has been shown i CDDP-resistant cancers, [48, 49],
where capacity of the tumor cells to repair DNA damage and avoid apoptosis is substantially
increased. Additionally, high responsiveness of TGCT cells to CDDP has also been associated with
increased induction of apoptosis and decreased efficiency of cell cycle arrest, probably caused by
altered p53 pathway [50]. Compared to other solid tumors, most of TGCTs express wild type p53,
usually in higher amounts than normal tissue [51].

Hypoxia and cisplatin resistance biomarkers

Solid tumors are usually partly hypoxic and increased levels of hypoxia are typically associated
with poor prognosis. Hypoxia i tumors promotes abnormal angiogenesis, desmoplasia and
mflammation, pre-selects cancer cells with more malignant phenotype, thus promoting tumor
progression and metastasis and  triggers resistance to radiotherapy and chemotherapy [52]. The
cellular response to the drop of oxygen concentration leads to stabilization of the hypoxia-inducible
transcription factor (HIF) that regulates the gene expression by binding to the hypoxia response
element (HRE) in the promoter region of different genes [53].

Increased HIF protein expression is controlled through PI3K/PTEN/AKT and RAS/RAF/MAPK
signaling [54]. HIF controls multiple tumor promoting signaling pathways including growth factor
signaling, cancer cell invasion, epitheliab-mesenchymal transition, metastasis and decreased
apoptosis and evasion from the immune system [52]. HIF directly mnhibits apoptosis by decreasing
the expression of the pro-apoptotic Bcl-2 family protems Bid and Bax [55] and induces the
expression of the apoptosis inhibitor survivin [56] and anti-apoptotic proteins Bel-2 and Bcl-xl [57].
In this way, cancer cells escape apoptosis and decrease theirr drug responsiveness. Hypoxia also
modifies the cell surface proteins, which can shield the cells from immune system. HIF has been
shown to directly up-regulate programmed death-ligand 1 (PD-L1) that suppress T cell and CD47

and prevents phagocytosis by macrophages [58]. Hypoxia contributes to setting a dormancy
5
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phenotype through up-regulation of the main dormancy genes NR2FI, DEC2, and p27, which
persist post-hypoxia helping the cancer cells to become therapy-resistant [59].

In TGCTs, HIF expression may be the master regulator of CDDP sensitivity. It stimulates
glucose uptake and production of higher amounts of NADPH and glutation (GSH) [60], the two
main defenders against oxidative stress. In chemosensitive TGCTs decreased HIF relates to low
GSH level, reduced detoxification of CDDP and wulnerability to chemotherapy-induced oxidative
stress. Increased HIF up-regulates multidrug resistance 1 (MDRI) gene expression [61] and
transcriptionally represses cyclin D1 that induces Gl arrest contributing to cytotoxicity and
resistance [62, 63].

HIF binds to HRE of XPA promoter and as a key regulator of its transcription increases XPA
expression, that has been associated with CDDP resistance in several solid tumors [64, 65].
Inhibition of HIF using siRNA or PX-478 protein inhibitor decreased the expression of XPA
resulting m an inabilty to repair CDDP-induced DNA ‘damage and enhancement of
chemosensitivity of various cancer cell lines and xenografts [66].

Epigenetic biomarkers

Compared to other solid tumors TGCTs, in fact, lack relevant and reliable biomarkers. Several
driver mutations in KI7, KRAS, and NRAS genes were suggested, but discovered in only a minority
of patients. Due to quiet mutational landscape [67], TGCTs are considered rather polygenic.
However, these tumors share unique epigenetic landscape and complex microRNA regulation.
Understanding epigenetic regulation in TGCTs seems to provide novel biomarkers with significant
potential for better management of this malignity.

DNA methylation

In premordial germ cells, the genome is typically highly methylated, but when developing TGCT,
the genome-wide methylation becomes ebolished, leading to epigenetic re-programming and
mitiation of tumorigenesis [68]. The epigenetic profile of TGCTs is characterised by genome-wide
demethylation [69]. However, seminomas and non-seminomas exert significantly different
promoter methylation profiles, as well as different genetic alterations, environmental component
and the familial risk, reflecting specific clinical features including CDDP resistance in TGCT
patients [70-72].

Especially familial susceptibility of TGCTs has been associated with promoter methylation n
identified TGCT risk genes [73]. However, aberrant promoter hypermethylation of TGCT candidate
suppressor genes or tumor-related genes is not that frequent as in other human cancers [74]. While
n semmnomas minimal or no methylation occurs, in non-semmomas and highly differentiated non-

seminomas specific gene promoters are typicaly hypermethylated. Testicular carcinoma in situ cells
6
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express features resembling embryonic stem cells. Genes of pluripotency transcription factors, such
as POUSF1/OCT-3/4, NANOG, T1A4-2, MYCLI, GDF3, LIN28-A, DPPA4, DPPAS5, KIT, AP-2y[75,
69] and promoters of supressor genes including BRCAI, TP53, RASSFI1A, CALCA or MGMT are
usually highly methylated [76].

A tumor suppressor RASSFI1A (RAS association domain-containing protein 1A), has been found as
one of the main supressors with variable promoter methylation m TGCTs. This gene participates on
cell-cycle control, microtubule stabilization, cellular adhesion, motility and apoptosis. CpG
methylation of the RASSFIA has been observed in many cancres [77] and depletion of this gene has
been associated with higher risk of chromosome rearrangements, accelerated mitotic progression
and enhanced cellular motility [78]. The RASSFIA promoter hypermethylation has been found in
both seminomas and non-seminomas being considered as the first epigenetic event of TGCT
tumorigenesis [68].

DNA methylation profiles can serve as potential molecular biomarkers for prognosis prediction and
treatment outcomes monitoring of TGCT patients. Using candidate gene approach Martinelli et al
[68] assessed a set of potential DNA methylation biomarkers able to discrimmnate accurately the
clinical outcome of TGCT patients. A high frequency of MGMT (O-6-methylguanine-DNA
methyltransferase) and CALCA (calcitonin related polypeptide alpha) methylation were associated
with non-seminomatous tumors while CALCA methylation was associated with refractory disease.
Moreover, promoter methylation of both genes has been identified as predictive for poor clinical
outcome for TGCT patients [68].

Concordantly, Costa et al- [79] have reported that promoter methylation of
CRIPTO/HOXA9/SCGB3A41 panel and RASSFIA best discriminate between controls and non-
seminomatous or semmomas tumors, and HOXA9/RASSFIA panel display the best discrimmnative
performance between non-seminomas and seminomas. Significant differences m CRIPTO, MGMT
and RASSFIA methylation levels were depicted between pure forms and matched mixed
components of seminomas and embryonal carcinoma. HOXA9, RASSFIA and SCGB3A1 promoter
methylation are significantly associated with tumor stage proving that methylation patterns may
significantly contribute to identification of more clinically aggressive tumors.

MicroRNAs

The wide histological diversity of TGCTs and theirr individual sesitivity to chemotherapy treatments
are significantly affected also by post-transcriptional regulatory network of microRNAs (miRNAs).
Strictly regulated expression of miRNAs is important for various biological processes from
embryonic development to cell proliferation [80], cell differentiation [81], apoptosis and

metabolism [82], or tumorigenesis [83]. MIRNAs are essential for spermatogenesis and play an
7



250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

mportant role during mitotic, meiotic, and post-meiotic stages of spermatogenesis [84]. TGCTs
display miRNA profiles similar to embryonic stem cells [85] and their dysregulated expression
relates to cancer development and progression [69].

Usually, terminally differentiated histological subtypes express high levels of the most
discriminating miRNAs compared to poorly differentiated tumor subpopulations, such as semmoma
or EC [86]. In seminoma, the most different expression profiles have been identified for mRNAs
controling expression of pluripotency maintaining genes OCT4, NANOG and SOX2. The expression
of miR-302 cluster or key oncomiRs miR-21 and miR-155 were found strongly up-regulated [86]
and expression of tumor supressor miRNAs as miR-133a, miR-145, miR-146 or miR-199a were
found down-regulated in TGCTs [86, 87]. In human embryonic stem cells (ESCs) miR-145
suppressed the expression of OCT4, and partially repressed the expression of SOX2 promoting their
differentiation [88]. Additionally, NANOG, SOX2 and OCT4 are regulated by miR-134, miR-296
and miR-470 n ESCs [89]. Vice-versa, the pluripotency factors NANOG, OCT4 and SOX2 are able
to regulate the expression of mRNA genes via direct binding to miRNA promoters, e.g. OCT4 to
miR-302 cluster [90].

During the male germ cell development, the expression of tumor suppressor let-7 miRNA family
increases along with miR-125a and miR-9 families [91]. These miRNAs regulate the expression of
LIN28, a key controller of stem cell pluripotency implicated in the formation of testicular TE [92].
Similarly, miR-30 family [92] or miR-181 [93] have been reported to down-regulate LIN28 in
ESCs and cancer cells. All these miRNAs have been identified under-expressed n malignant
TGCTs [94].

It is a typical feature that most germ cell tumours contain wild type p53 and over-express miR-371,
miR-372 and miR-373 '(miR-371-373 clusters) [95, 86]. The miR-371-373 cluster is involved in
cellular senescence induced by oncogenic stress triggering malignant transformation of the cells
[86]. MiR-371-373 clusters and members of miR-302 family (miRNA-302a, miRNA-302b,
miRNA-302¢) have recently been proposed as markers for TGCTs [85]. These clusters are highly
TGCT-specific, especially miR-371a-3p that is strongly up-regulated in patients with SE, EC, YS
and mixed non-seminomas. During the differentiation from EC to TE and post-orchiectomy, the
expression of these miIRNAs significantly declnes. Similarly, miR-17-5p and miR-154 are
expressed at higher levels in EC but are down-regulated upon differentiation to TE [86].

Gillis and co-workers [86] found miR-301 predominantly expressed in more differentiated tissues,
such as spermatocytic seminomas, YST and TE, but absent in embryonic stem cells and EC. On
contrary, miR-375 was highly expressed n TE, YST and mixed tumors, but not m SE or EC.

Overexpression of these miRNAs was found to down-regulate expression of histone-lysine N-
8
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methyltransferase Suv39-H1 and LATS2 (large tumour suppressor homolog 2), both nvolved in the
Ras oncogene pathway. LATS2 deletion causes cell proliferation and oncogenic transformation,
while its over-expression was shown to prevent Ras-mediated transformation of the cells. miR-371-
373 cluster was found to directly bind to the LATS2 3'UTR to control its translation and its over-
expression allowed cells to proliferate regardless of negative signals originating from p53 and the
cell cycle mhbitor p21 [95]. MiR-373 has been identified as a cell migration and metastasis-
promoting factor in breast cancer cells [96]. The same role of this mIRNA can be expected m TGCT
metastasis. The up-regulation of miR371-373 cluster was detected together with other miRNA
molecules in several CDDP-resistant germ cell tumour cell lnes and is expected to play a role in
inhibition of cell death and promotion of differentiation in response to CDDP [97]. Other miRNAs
were found significantly up-regulated in semmoma, incluiding miR-221, miR-222, miR-372 and
miR-374 [98], while others have been observed down-regulated e.g. miR-30a, miR-34a, miR-106a,
miR-136, miR-382 or miR-217 [98, 99].

In solid tumors, numerous miRNAs are differentially regulated by hypoxia. For example, miR-210,
miR-155, miR-372, miR-373, miR-21 and miR-10b, known to have responsive element HRE in
their promotor region, were found to be up-regulated [100], whereas miR-20b, miR-200b or miR-
199a were found down-regulated [101]. On the other hand, miR-20b, miR-199a, miR-210 and miR-
424, directly target HIF gene and control its expression [102]. MiR-210 is up-regulated by hypoxia
mn most of solid tumors and targets genes involved i cell cycle regulation, cell survival,
differentiation, angiogenesis, metabolism and cancer cell immune evasion [103]. This miRNA is
considered a master hypoxamiR and a new biomarker of metastatic potential and chemoresistance
in different solid tumors [104-106].

Downregulation of DDR genes by binding mRNAs to their 3'UTR sensitizes cancer cells to
chemotherapeutic agents. For example, miR-182, miR-1255b, miR-193b, and miR-148b were found
to regulate important HR proteins like BRCA1l, BRCA2 and RADS51 [107]. HIF-induced miR-210
regulates RAD52, miR-96 regulates RADS51 and sensitizes cancer cells to CDDP and PARP
mhibitors [108]. Similarly, in TLS, imhibition of DNA polymerase REV1 by miR-96 increases
sensitivity of cancer cells to PARP inhibitors and CDDP treatment [33]. Crosby et al. [33] used
HelLa, MCF-7, and mouse embryonic fibroblasts to analyze the role of mRNAs n DNA repair
under hypoxic conditions. They observed up-regulated miR-210 and miR-373 in hypoxic cells in
HIF-dependent manner. Incresed expression of miR-210 was able to suppress levels of RADS2, a
key factor n HR, whereas miR-373 overexpression down-regulated both, RAD52 and RAD23B, a
component of the XPC/RAD23B complex mvolved in the NER machinery. Both mRNAs are
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complementary to seed sequences in 3'UTR of RAD52 and RAD23B genes. Use of antagomirs for
miR-210 and miR-373 reverted hypoxia-induced RAD52 and RAD23B down-regulation [33].
Friboulet et al. [109] analyzed the role of ERCC1, a NER pathway protein involved in recognition
and removal of DNA platmum adducts and in repair of stalled DNA replication forks in non-
seminoma patients. ERCCl1-positive tumors showed lower rate of genomic lesions than ERCCI-
negatives. In ERCCl-positive cancers, down-regulation of miR-375 was observed. Down-
regulation of miR-375 was previously described in hepatocellular carcmoma (HCC) and gastric
cancer where over-expression of miR-375 was able to inhibit cell proliferation [110]. This miRNA
was also predicted to target other genes ivolved in DNA repair, such as 7P53, USPIl, APEXI,
TYMS, MLH3, PARP4, NTHLI, ERCC3, and XRCC6BP1 [110]. Similarly, miR-192 is involved in
DDR genes expression; it down-regulates ERCC3 and ERCC4 and its over-expression significantly
nhibits cellular NER [111].

miR-770-5p is another miRNA mvolved m CDDP resistance [112]. In ovarian cancer, the level of
miR-770-5p expression was low in CDDP-resistant patients, but its overexpression in resistant cell
lmes increased sensitivity to CDDP. MiR-770-5p targets ERCC2 involved m NER and may
function as an anti-oncogene promoting chemosensitivity by downregulation ERCC2 [112].

The current clinical practice mostly requires reliable and specific tools for disease progression and
treatment outcome monitoring. In this regard, miRNAs as a biomarkers show a great promise. For
instance, miR-371 as a biomarker for TGCT demonstrated a sensitivity of 84.7 % and specificity of
99 %, in contrast with the serum markers AFP and hCG, that were found false negative in 50 % of
cases [113]. Upregulation of miR-371-373 and miR-302 clusters in both, the tissue and serum, were
detected in the TGCT patients but their expression dropped significantly after orchiectomy [86,
114]. Dieckmann’s [114] group further revealed the existence of a concentration gradient for these
miRNAs around the tumour, being higher in the serum of the testicular vein than in peripheral
serum.

Gillis et al. [115] developed a robust protocol for analysing miR-371-373 and miR-302 clusters in
serum, bringing the Target Serum miRNA test (TSmiRNA). The combination of conventional
serum markers AFP, hCG and LDH evaluation and TSmiRNA provided an adequate and accurate
classification of all testicular cancer samples. [116, 117]. Recently, Mego et al. [118] showed very
promissing translation results that provided evidence, that plasma levels of miR-371a-3p correlate
with several disease characteristics mcluding sites of metastases, serum tumor markers, IGCCCG
prognostic group, and favorable response to chemotherapy measured just prior to the start of

therapy. This group also managed to show that prognostic value of plasma miR-371a-3p in

10



350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

chemotherapy naive TGCTs patients starting first line of chemotherapy, as well as prognostic value
of plasma miR-371a-3p changes during the treatment.

Chronobiology

To respect complex regulatory network, additional mechanism affecting precise control of DDR
and other signaling pathaways of the cell response (and potentially their contribution to CDDP
resistance) should be considered. Such control relates to the circadian clock regulation.
Approximately 40% of all proteins within the cell are subjected to circadian control [38], although
i tissue specific manner [119].

Each cell is equipped with positive regulators CLOCK and BMALI, transcriptional factors, which
regulate expression of genes in mammals by interacting with E-box (CACGTG) i their promoter
[120]. Heterodimer CLOCK/BMALI targets different repressor proteins, mncluding negative
regulators PERIOD (PERI1, 2, 3) and CRYPTOCHROME (CRY1, 2), which in turn nhibit the
transcriptional activity of CLOCK/BMALI transcription factor [121].

Under normal physiological conditions, DDR processes are synchronized. However, the process of
DDR can run independently from circadian rhythm [122]. From the broad spectrum of DNA
damage responses, NER is the only one showing circadian rhythmicity. The rhythmicity of NER
relates to the rhythmic expression of XPA, as observed e.g. in brain [123], skin keratinocytes [124],
kidneys and liver [125]. However, rhythmic expression of XPA has not been described in testes
until now [126].

The circadian clock controlls the steady state level of XPA [123] by HERC2 [126] and SIRTI
[127]. The transcriptional activity of the circadian clock induces a daily rhythm of XPA gene
expression, whereas HERC?2 functions as an E3 ubiquitin ligase for XPA degradaton in a
proteasome-dependent manner. The half-life of XPA protein is approximately 4 h in the absence of
DNA damage, but much longer n the presence of DNA damage [126]. In response to DNA
damage, XPA is phosphorylated by ATR kinase, which stabilizes XPA by preventing its association
with HERC2 [126]. Thus, ATR activity in response to DNA damage can be utilized to a certain
extent as a surrogate marker for NER activity. SIRT1, a NAD"-dependent histone deacetylase, also
plays a critical role in NER pathway control.

Concerning circadian rhythms in oncological diseases, plentiful opposing, and tissue specific results
can be found. Some studies report, that tumors do indeed show rythmic circadian gene expression
[128], while others indicate that cancerous tissue either lacks rhythmicity or expression of clock
genes is compromised [129, 130]. Recent studies have declared absence of circadian rhythm in
TGCTs, although some authors proposed that cyclic expression of clock genes in testes is

suspended due to cellular differentiation during spermatogenesis [126,131].
11
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Because TGCTs are very good model for studymg mechanism of CDDP resistance and DNA
damage response, understanding the absence of circadian rhythms in this tissue becomes of an
increased terest. Lu et al [132] explained post-translational circadian rhythm disruption via
cancer/testis antigen (CTA) PIWIL2, which is able to repress circadian rhythms both in tumor cells
and in testis. PIWIL2 suppresses glycogen synthase kinase 3 (GSK3p)-induced phosphorylation to
regulate the stability and activity of circadian proteins. Besides protecting BMAL1 and CLOCK
from degradation, authors suggest that PIWIL2 can also bind to certain E-box sequences (PER2 and
Rev-Erba promoters), to negatively regulate the transcriptional activation of main clock proteins.
Michael et al. [133] supported the hypothesis of CTA disrupting the circadian rhythms in testes and
in tumors. They identified the PAS domain containing protein 1 (PASDI1), evolutionarily connected
to CLOCK protein, that can interact with the CLOCK/BMALI heterodimer and suppress circadian
rthythmicity.

To support the complexity of this regulation, several studies point out the effect of miRNA on
circadian clock. So far, miR-211 (a PERK inducible miRNA) has been shown mvolved in
circadiane clock control regulating BMAL1/CLOCK activity [134].

The presence of circadian rhythms in tumors, especially in TGCTs, needs further elucidation. Even
mn lack of rhythmicity, the core clock proteins still affect tumor development [135]. New
information about circadian rhythms in TGCTs is needed to clarify its role and existence or the
reason of its complete lack. Importnatly, complex understanding of chronobiology could
significantly support future clinical implications and development of chronochemotherapy regimens

[136] that could potentially deminish consequences of chemoresistance in TGCT and other cancers.

Conclusion

Today, conventional clinical management of testicular germ cell tumors is largely based on the
monitoring of serum tumor markers, unfortunately showing limited sensitivity and specificity [137].
Due to limited informative value of these markers, as well as increasing requirement of individual,
personalized approach to the patient, there is an urgent need of discovery of novel reliable
biomarkers, mostly for diagnostics of advanced TGCT stages, precise stratification of patients prone
to relaps, and prediction of chemotherapy response. An increasing number of studies provide
cumulative evidence of specific epigenetic regulators as relevant oncogenic biomarkers of TGCTs
[138, 139]. Deep and complex understanding of molecular mechanisms, regulatory pathways and
their crosstalk involved in therapy response remains crucial for efficient treatment management of
TGCT patients, especially those that are CDDP-resistant. Particular attention has to be paid to the

role of DNA damage and repair genes, pluripotency factors, effect of hypoxia and their epigenetic
12
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and circadian controllers as they represent a pool of novel promising biomarkers or potential

druggable targets (Figure 2).
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Figure legends

Figure 1. Activation of DNA damage repair pathways during cell cycle and schema of NER.
At the top, predominant repair processes in each phase of the cell cycle are shown. Based on type of
damage during the cycle, different repair pathways are involved mn DNA damage repair. NER is the
main repair pathway associated with CDDP-induced DNA damage in TGCTs, and key steps of
NER are illustrated below. Abbreviations: BER — base excision repar; ERCC1 — excision repair
crosscomplementation group 1; HR — homologous recombination, MMR — mismatch repair; NER —
nucleotide excision repair; NHEJ — non-homologous end jomning; PCNA — proliferating cell nuclear
antigen, RAD23B - excision repair protein RAD23 homolog B, RPA — replication protein A; TFIIH
— transcription factor II H; TLS — translesion synthesis; TS — template switch; XP A-G — xeroderma
pigmentosum group A-G.

Figure 2. The crosstalk of molecular factors and signaling pathways involved in CDDP
resistance in TGCTs. Cancer cell can gain chemoresistance towards CDDP via several different
mechanisms:  reduced cellular uptake and/or increased effux of CDDP, increased CDDP
detoxification by glutathione (GSH), regulation of the cell cycle arrest prolonging time for DNA
damage response mechanisms to repair and restore CDDP-induced adducts (NER prominently), or
mhibition of apoptosis. Loss of pluripotency of the cell, hypoxia — typical for solid tumors, and
mutations in 7P53 gene are another crucial factors contributing to chemoresistance development.
All of these mechanisms are under control of transcription factors (e.g. HIF), epigenetic modulators
(DNA methylation and miRNAs) and potentially, circadian regulation via clock controlled genes.
To understand CDDP and other anti-cancer drug therapy resistance it is important to understand
orchestration and crosstalk of multiple regulatory pathways. The key factors of these signaling
pathways could represent a pool of potential novel diagnostic and prognostic biomarkers (in grey
boxes). Abbreviations: CDDP — cisplatin; DDR — DNA damage response; HIF — hypoxia-inducible
factor; NER — nucleotide excision repair; TGCT — testicular germ cell tumor.
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