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MicroRNA-506-3p inhibits proliferation and promotes apoptosis in ovarian 
cancer cell via targeting SIRT1/AKT/FOXO3a signaling pathway 
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Ovarian cancer (OC) is one of the most common tumors in females. Growing evidence shows that microRNA-506-3p 
(miR-506-3p) is downregulated in OC tissues. The purpose of this study was to investigate the mechanism of miR-506-3p 
in modulating OC. Quantitative reverse transcriptase PCR (qRT-PCR) was employed to investigate the expression of 
miR-506-3p and its target in OC tissues or cell lines. CCK-8 or colony formation assay was used to examine cell viability 
or proliferation, respectively. Flow cytometry was demonstrated to detect cell apoptosis. Western blot was then applied to 
analyze underlying mechanisms. The potential target of miR-506-3p was examined via luciferase reporter assay. MiR-506-3p 
was significantly downregulated in both human OC tissues and cell lines. Overexpression of miR-506-3p not only decreased 
cell viability of OC cell lines but also promoted cell apoptosis, thus inhibiting OC progression. Moreover, SIRT1 (Sirtuin 
1) was found to be a direct target of miR-506-3p, and SIRT1 expression was negatively regulated by miR-506-3p in OC 
cell lines. Further investigation revealed that overexpression of SIRT1 could promote cell viability as well as inhibit cell 
apoptosis, showing the reversed effect on OC progression compared to miR-506-3p. Lastly, AKT (Protein kinase B) /FOXO3a 
(Forkhead box O3) signaling pathway was inactivated by miR-506-3p while activated by SIRT1, relating to regulation of 
miR-506-3p on OC progression. Our results revealed a novel mechanism by which miR-506-3p inhibited proliferation while 
promoted apoptosis of OC via inactivation of SIRT1/AKT/FOXO3a signaling pathway, suggesting that miR-506-3p might 
be a potential target for OC. 
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Ovarian cancer (OC), as one of the most common 
tumors in females, remains a leading cause of morbidity and 
mortality [1]. Although the developing treatments including 
surgery, radiation therapy, and chemotherapy are widely 
used nowadays [2], the unsatisfactory five-year survival rate 
[3–5] urges researchers to find new therapeutic targets for 
OC. It has been reported that critical oncogenes or tumor 
suppressors have been suggested to be promising therapeutic 
targets for OC due to the regulation of OC development 
and progression [6, 7]. However, the unclear pathogenesis 
and progression of OC suggests that it is urgent to study the 
molecular pathogenesis of OC metastasis and discover more 
effective therapeutic targets.

MicroRNAs (miRNAs) inhibit the gene expression via 
binding to the 3’ untranslated regions (3’UTRs) of target 
mRNAs [8, 9]. Growing evidences have shown that miRNAs 
are involved in the regulation of cell proliferation and 

apoptosis [10–12], and play an important role in the cancer 
cell progression [13, 14]. A large number of miRNAs such 
as miR-21 [15], miR-181a [16], miR-506 [17], miR-199b-5p 
[18] have been found to be involved in regulation of OC. 
MiR-506-3p has been indicated to inhibit osteosarcoma [19], 
neural stem cell [20], esophageal squamous cell carcinoma 
[21] and non-small lung cancer [22] progression. However, 
the underlying mechanism of miR-506-3p in OC remains to 
be investigated.

SIRT1 (Sirtuin 1) belongs to member of the sirtuin 
proteins family and functions as deacetylase to regulate 
PGC1-alpha/ERR-alpha complex for the modulation of cell 
metabolism [23]. Moreover, SIRT1, as an intracellular regula-
tory protein, also deacetylates and thereby deactivates p53 
[24] to regulate tumorigenesis. Recently, SIRT1 was found to 
be related with poor prognosis of epithelial ovarian cancer 
[25] and promoted ovarian cancer cell invasion [26] as an 
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oncogene. However, the regulatory mechanism of SIRT1 on 
OC and the relationship between miR-506-3p/SIRT1 and 
OC are largely unknown. Therefore, the present study aimed 
to investigate the effects as well as the molecular mechanism 
of miR-506-3p on OC progression.

Patients and methods

Patients and tissues collection. Total of 20 normal 
healthy people and 60 patients diagnosed with primary, 
recurrent and metastatic OC (n=20 each) were recruited 
from the First Hospital of Hunan University of Chinese 
Medicine, Changsha, Hunan, China. Approval for this study 
was acquired from Ethics Committee of the First Hospital 
of Hunan University of Chinese Medicine. Before surgery, 
written informed consents were acquired from all partici-
pants. The tissues were harvested from patients immedi-
ately after surgical removal and kept in –80 °C freezer for the 
following experiments.

Cell culture. Normal human ovarian epithelial cell line 
(IOSE386), human embryonic kidney 293T (HEK-293T) cells 
and human OC cell lines HO-8910PM, A2780, HO-8910, 
CAOV3, SKOV3, OVCA433, PEO1 and COC1 were 
purchased from Chinese Academy of Sciences Committee 
on Type Culture Collection Cell Bank (Shanghai, China). All 
the cells were cultured in RPMI-1640 (Hyclone, Logan, UT, 
USA) containing 15% fetal bovine serum (GIBCO, Rockville, 
MD, USA) at incubator with 37 °C and under a humidified 
atmosphere with 5% CO2. The cells with confluence of 80% 
were used for the experiments.

Cell transfection. MiR-506-3p mimics, and the negative 
controls (miR-NC) were synthesized by GenePharma 
(Suzhou, China). For the overexpression of SIRT1, PCR 
was used to amplify SIRT1 and subcloned into expres-
sion plasmids pcDNA3.1 (Invitrogen, Carlsbad, CA, USA). 
HO-8910PM was seeded at a concentration of 4×105 cells per 
well in 12-well plates and incubated overnight. The culture 
medium was then removed and cells were washed with 
PBS. The cells were transfected with miR-506-3p mimics or 
miR-NC (40 nM), pcDNA3.1-SIRT1 or the empty vector via 
Lipofectamine 2000 (Invitrogen) according to the manufac-
turer’s instructions. Cells were harvested for RNA or protein 
extraction and further analyses 48 hours after transfection.

qRT-PCR. Sample RNAs were extracted from OC tissues 
and cell lines via Trizol reagent (Invitrogen), and miRNAs 
were extracted using miRcute miRNA isolation kit (Tiangen, 
Beijing, China). The RNAs were then reverse transcribed into 
cDNAs using miScript Reverse Transcription kit (Qiagen, 
Hilden, Germany). cDNAs were amplified by using SYBR1 
Premix Ex Taq™ II (Takara, Shiga, Japan). U6 was used 
as the internal reference and GAPDH as the endogenous 
controls. Three technological replicates were used to ensure 
the reliability of the analysis. The primer sequences were as 
shown: SIRT1, 5’-TAGCCTTGTCAGATAAGGAAGGA-3’ 
(forward) and 5’-ACAGCTTCACAGTCAACTTTGT-3’ 

(reverse); miR-506-3p, 5’-ACACTCCAGCTGGGTAAGG-
CACCCTTCTGA-3’ (forward) and 5’-CTCAACTGGT-
GTCGTGGAGTCGGCAATTCAGTTGAGTCTACTCA-3’ 
(reverse); U6, 5’-CTCGCTTCGGCAGCACA-3’ (forward) 
and 5’-AACGCTTCACGAATTTGCGT-3’ (reverse); 
GAPDH, 5’-TGTTCGTCATGGGTGTGAAC-3’ (forward) 
and 5’-ATGGCATGGACTGTGGTCAT-3’ (reverse). The 
relative expression was analyzed using the 2-ΔΔCt method [27].

Cell counting kit-8 (CCK-8) assay. Three thousand cells/
well transfected HO-8910PM cells were trypsinized and then 
cultured in 96-well plates for 24, 48 or 72 h. After removing 
the medium, the cells were washed with PBS. The CCK-8 
assay (Beyotime Institute of Biotechnology, Haimen, China) 
was used to evaluate the cell viability at 490 nm by a spectro-
photometer (BioTek, VT, USA).

Cloning formation assay. One million cells/ml transfected 
HO-8910PM cells were harvested. Then 4.1 ml RPMI-1640 
medium and 0.9 ml 4% agar were warmed to 56 °C and then 
cooled to precipitate. 3×104 cells/3ml in RPMI-1640 medium 
with 0.36% agar were diluted to form the single-cell suspen-
sion. All the colonies were stained with 0.04% crystal violet in 
2% ethanol in PBS, and then incubated at 37 °C for 3 weeks. 
The stained colonies were photographed under microscope.

Flow cytometry. 1×104 transfected HO-8910PM cells 
per well were harvested. The cells were then fixed with 
70% ethanol at 4 °C for 30 min. After washing with PBS, 
ribonuclease (Abcam, Cambridge, MA, USA) was added to 
the cells, and the propidium iodide (PI, 200 µl, Abcam) was 
used to stain the cells. FACS flow cytometer (Attune, Life 
Technologies, Darmstadt, Germany) was used to analyzed 
the cell cycle.

Bioinformatics analysis. TargetScan version 7.1 (www. 
targetscan.org) was utilized to predict the target genes of 
miR-506-3p.

Dual luciferase reporter assay. The fragments of wild type 
3’UTR of SIRT1 (SIRT1-WT) containing the binding sites for 
miR-506-3p were amplified and cloned into psi-CHECK™-2 
vector (Promega, Madison, WI, USA), as well as the mutant 
SIRT1 (SIRT1-MUT) whose binding ability with miR-506-3p 
were lost. 3×104 HEK-293T cells per well were seeded in 
48-well plates for 24 h. Cells were then transfected with 
psiCHECK™-2-SIRT1-WT, psiCHECK™-2-SIRT1-MUT 
(1 µg) in combination with miR-506-3p mimics (100 nM; 
GenePharma) via Lipofectamine 2000 (Invitrogen). 48 h later, 
luciferase activities were measured using the Dual Luciferase 
Reporter Assay System (Promega) and detected by Lumat 
LB 9501 luminator (EG&G Berthold, Bundoora, Australia). 
Firefly luciferase activity was normalized to renilla luciferase 
activity for each group.

Western blot. Cultured HO-8910PM cells were harvested 
and lysed in RIPA buffer (KeyGen, Nanjin, China). Protein 
lysates were loaded onto 10% SDS-PAGE, and then trans-
ferred to PVDF membrane. The membrane was blocked in 
PBS-T with 5% BSA for 1 h. PVDF membranes were then 
probed with rabbit anti-SIRT1 monoclonal antibody (1:1000, 
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ab32441, Abcam), AKT (1:500, ab8805, Abcam), p-AKT 
(1:1500, ab38449, Abcam), FOXO3a (1 μg/ml, ab23683, 
Abcam), p-FOXO3a (1:500, ab47285, Abcam), GAPDH 
(1:2500, ab9485, Abcam) overnight at 4 °C. The PVDF 
membrane was washed with TBST and labeled with horse-
radish peroxidase (HRP)-conjugated secondary antibodies 
(1:2000, ab6721, Abcam) for 1 h. Immunoreactivities were 
detected by enhanced chemiluminescence (KeyGen). 
GAPDH was used as a control.

Statistical analysis. All results are expressed as mean ± 
SEM of at least 3 independent experiments. By the means of 
GraphPad Prism software (GraphPad Prism Software Inc., 
San Diego, USA) and one-way analysis of variance (ANOVA), 
we determined the statistical analyses. A p<0.05, p<0.01 or 
p<0.001 was considered as a mark of statistically significant.

Results

MiR-506-3p was downregulated in ovarian cancer. We 
firstly determined the expression level of miR-506-3p in OC. 
As shown in Figure 1A, the expression level of miR-506-3p 
was substantially decreased in 60 primary, recurrent and 
metastatic OC tissues compared with the normal tissues 
(p<0.001). Moreover, compared to the primary OC tissues, 
recurrent and metastatic OC tissues contained lower 
miR-506-3p expression (Figure 1A). To further confirm the 
downregulation of miR-506-3p in OC tissues, we then inves-
tigated the expression of miR-506-3p in several common 
ovarian cancer cell lines. As demonstrated in Figure 1B, 
miR-506-3p was also significantly decreased in ovarian 
cancer cell lines (HO-8910PM, A2780, HO-8910, CAOV3, 
SKOV3, OVCA433, PEO1 and COC1) compared with in 

the normal human ovarian epithelial cell line (IOSE386). Of 
those, HO-8910PM, as highly metastatic OC cell line, showed 
the lowest expression of miR-506-3p (Figure 1B) was selected 
for the following functional assays. Therefore, miR-506-3p 
was downregulated in both ovarian cancer tissues and cells, 
and the decreased expression level of miR-506-3p was associ-
ated with poor differentiation of OC.

MiR-506-3p inhibited cell proliferation and induced 
cell apoptosis of OC. To investigate the functional role 
of miR-506-3p on OC, stable HO-8910PM cell line with 
overexpression of miR-506-3p was established via transfec-
tion with miR-506-3p mimics and confirmed in Figure 2A. 
Functional assays revealed that miR-506-3p overexpression 
not only decreased the cell viability (Figure 2B), but also 
decreased number of colonies of OC cells compared with the 
miR-NC group (Figures 2C and 2E). Moreover, flow cytom-
etry showed that miR-506-3p overexpression promoted the 
OC cell apoptosis (Figures 2D and 2F). These results revealed 
that overexpression of miR-506-3p inhibited cell prolifera-
tion and induced cell apoptosis in OC.

SIRT1 is a direct target gene of miR-506-3p in OC. 
To uncover the underlying mechanism about miR-506-3p 
in OC, we firstly determined that SIRT1 was found to be a 
putative target for miR-506-3p via bioinformatics analysis 
(Figure  3A). Moreover, luciferase vectors containing 
wildtype (WT) or mutant (MUT) 3’UTR of SIRT1 were 
firstly constructed. Luciferase reporter assay was then 
employed and the result indicated that luciferase activity was 
significantly inhibited in HEK-293T cells co-transfected with 
the SIRT1-WT and miR-506-3p mimics, while no signifi-
cantly changes were detected by co-transfection with the 
SIRT1-MUT and miR-506-3p mimic (Figure 3B). In general, 

Figure 1. MiR-506-3p was downregulated in ovarian cancer. A) qRT-PCR analysis of miR-506-3p in human primary, recurrent and metastatic OC tis-
sues (n=45, 15 each) and normal ovarian tissues (n=15, normal). *** represents primary, recurrent and metastatic OC tissues vs. normal, p<0.001. B) 
qRT-PCR analysis of miR-506-3p in OC cell lines (HO-8910PM, A2780, HO-8910, CAOV3, SKOV3, OVCA433, PEO1 and COC1) and normal human 
ovarian epithelial cell line (IOSE386). **, *** represents vs. IOSE386, p<0.01, p<0.001.
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Figure 2. MiR-506-3p inhibited cell proliferation and induced cell apoptosis of OC. A) Transfection efficiency of miR-506-3p mimics via qRT-PCR. B) 
MiR-506-3p inhibited the cell viability of HO-8910PM cells. C) MiR-506-3p inhibited the clone formation ability of HO-8910PM cells. D) MiR-506-3p 
induced the cell apoptosis of HO-8910PM cells. E) The number of colonies was quantitated by miR-506-3p mimics in HO-8910PM cells. F) The apop-
tosis rate was quantitated by miR-506-3p mimics in HO-8910PM cells. **p<0.01, **p<0.01 represents comparison with miR-NC.

miR-506-3p might bind to 3’UTR of SIRT1 in OC. Secondly, 
the expression of SIRT1 was inhibited by miR-506-3p mimics 
(Figure  3C), revealing the negative correlation between 
them. Lastly, western blot analysis revealed that miR-506-3p 

decreased the expression of SIRT1 (Figures 3D and 3E). 
Although the downstream targets of SIRT1 such as AKT 
and FOXO3a were not affected by miR-506-3p, the p-AKT 
and p-FOXO3a were decreased under the condition of 
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miR-506-3p overexpression (Figures 3D and 3E), suggesting 
the relation between miR-506-3p and SIRT1/AKT/FOXO3a 
signaling pathway.

Overexpression SIRT1 promoted cell proliferation 
and inhibited cell apoptosis of OC. We have demonstrated 
that SIRT1 was a direct target gene of miR-506-3p in OC. 
Therefore, we verified the effect of SIRT1 to the expression 
of miR-506-3p. HO-8910PM cells transfected with Vector 
and pcDNA3.1-SIRT1 was established, respectively. Firstly, 
qRT-PCR analysis revealed that the expression of SIRT1 was 
significantly upregulated in SIRT1 overexpression group 
than that in control with Vector group while the expression 
of miR-506-3p was significantly downregulated (Figures 4A 
and 4B). Secondly, CCK-8 (Figure 4C) and colony formation 
assays (Figure 4D) showed that the cell viability and cell prolif-

eration were significantly promoted by addition of SIRT1 
overexpression. The number of colonies of HO-8910PM 
cells transfected with pcDNA3.1-SIRT1 was dramatically 
increased compared to cells in control with Vector group 
(Figure 4E). Lastly, flow cytometry also confirmed that cell 
apoptosis was inhibited by addition of SIRT1 overexpression 
(Figure 4F and 4G). Moreover, the increased SIRT1, p-AKT 
and p-FOXO3a expression were also observed in SIRT1 
overexpression group compared to control with Vector group 
(Figures 4H and 4I). In conclusion, these results demon-
strated that overexpression SIRT1 promoted cell proliferation 
and inhibited cell apoptosis of OC.

MiR-506-3p inhibited cell proliferation and induced 
cell apoptosis of OC via SIRT1. It was suggested that SIRT1 
may be related to miR-506-3p mediated suppression of OC 

Figure 3. SIRT1 is a direct target gene of miR-506-3p in OC. A) Potential binding site of miR-506-3p in 3’UTR SIRT1, the mutant 3’UTR SIRT1 was 
also shown. B) Detection of miR-506-3p on luciferase activity of 3’UTR SIRT1-WT or -MUT by luciferase reporter assay. C) The mRNA expression of 
SIRT1 was decreased by miR-506-3p mimics. D) Western blot analysis of expression of SIRT1, AKT, p-AKT, FOXO3a, p-FOXO3a affected by miR-506-
3p mimics. E) The relative protein expression of SIRT1, AKT, p-AKT, FOXO3a, p-FOXO3a. ***p<0.001 represents comparison with miR-NC.
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Figure 4. Overexpression SIRT1 promoted cell proliferation and inhibited cell apoptosis of OC. A) qRT-PCR analysis of SIRT1 in HO-8910PM 
cells transfected with control vector and pcDNA3.1-SIRT1, respectively. B) qRT-PCR analysis of miR-506-3p in HO-8910PM cells transfected with 
Vector or pcDNA3.1-SIRT1, respectively. C) Cell viability of HO-8910PM cell was increased by addition with SIRT1. D) Effect of SIRT1 on the cell 
proliferation of HO-8910PM cells by colony formation assay. E) The number of colonies in HO-8910PM cells transfected with vector or pcDNA3.1-
SIRT1 were counted, respectively. F) Flow cytometry showed the inhibition ability of SIRT1 on cell apoptosis. G) The apoptosis rate of HO-8910PM 
cells transfected with Vector or pcDNA3.1-SIRT1, respectively. H) Western blot analysis of expression of SIRT1, AKT, p-AKT, FOXO3a, p-FOXO3a 
affected by SIRT1. I) The relative protein expression of SIRT1, AKT, p-AKT, FOXO3a, p-FOXO3a was calculated by ImageJ. ***p<0.001 represents 
comparison with Vector.

cell proliferation and promotion of cell apoptosis based on 
the aforementioned results. We then decided to investigate 
this speculation. Stable HO-8910PM cell line transfected 
with miR-506-3p mimics or co-transfected with miR-506-3p 

mimics and pcDNA3.1-SIRT1 was established. Firstly, 
qRT-PCR analysis revealed that the expression of miR-506-3p 
induced by miR-506-3p mimics was downregulated by the 
addition of SIRT1 overexpression (Figure 5A); on the other 
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Figure 5. MiR-506-3p inhibited cell proliferation and induced cell apoptosis of OC via SIRT1. A) qRT-PCR analysis of miR-506-3p in HO-8910PM 
cells transfected with miR-506-3p mimics alone or co-transfected with miR-506-3p mimics and pcDNA3.1-SIRT1. B) qRT-PCR analysis of SIRT1 in 
HO-8910PM cells transfected with miR-506-3p mimics alone or co-transfected with miR-506-3p mimics and pcDNA3.1-SIRT1. C) Cell viability of 
HO-8910PM cell was decreased by miR-506-3p mimics, while addition of SIRT1 increased the cell viability. D) Effect of miR-506-3p and SIRT1 on the 
cell proliferation of HO-8910PM cells by colony formation assay. E) The number of colonies in HO-8910PM cells transfected with miR-506-3p mimics 
alone or co-transfected with miR-506-3p mimics and pcDNA3.1-SIRT1 were counted. F) Flow cytometry showed the promotion ability of miR-506-3p 
on cell apoptosis reversed by addition of SIRT1. G) The apoptosis rate of HO-8910PM cells transfected with miR-506-3p mimics alone or co-transfected 
with miR-506-3p mimics and pcDNA3.1-SIRT1 were counted. H) Western blot analysis of expression of SIRT1, AKT, p-AKT, FOXO3a, p-FOXO3a 
affected by miR-506-3p mimics and SIRT1. I) The relative protein expression of SIRT1, AKT, p-AKT, FOXO3a, p-FOXO3a were quantified. **p<0.01, 
***p<0.001 represents comparison with miR-506-3p mimics + Vector.



MIR-506-3P/SIRT1 AXIS IN OVARIAN CANCER 351

hand, the decreased expression of SIRT1 by miR-506-3p 
was also upregulated by addition of SIRT1 overexpres-
sion (Figure 5B). Secondly, CCK-8 (Figure 5C) and colony 
formation assays (Figure 5D) showed that the cell viability 
and cell proliferation inhibited by miR-506-3p mimics 
were promoted by addition of SIRT1 overexpression. The 
number of colonies of HO-8910PM cells co-transfected with 
miR-506-3p mimics and pcDNA3.1-SIRT1 was dramatically 
increased compared to cells transfected with miR-506-3p 
mimics (Figure 5E). Lastly, flow cytometry also confirmed 
that cell apoptosis promoted by miR-506-3p mimics was also 
inhibited by addition of SIRT1 overexpression (Figures 5F and 
5G). Moreover, the decreased p-AKT and p-FOXO3a expres-
sion under the condition of miR-506-3p mimics were also 
increased by addition of SIRT1 overexpression (Figures 5H 
and 5I). In conclusion, these results demonstrated that the 
regulation of miR-506-3p on OC proliferation and apoptosis 
was partially through suppression of SIRT1.

Discussion

It has been well studied that the development of OC is 
closely associated with the abnormal cell proliferation and 
apoptosis [28]. Based on this, the screening for proteins or 
other molecules related to the inhibition of OC cell prolifera-
tion or promotion of cell apoptosis are crucial for the novel 
therapeutic schedules to treat OC [29–33]. Previous study 
has shown that in cervical cancer, miR-506 functioned as 
a tumor suppressor via inhibition of cell proliferation and 
promotion of cell apoptosis [34]. However, the underlying 
regulatory mechanism of miR-506-3p on OC progression 
remains largely unclear. Our current study then investigated 
the effects and underlying mechanisms of miR-506-3p on 
OC cell proliferation and apoptosis. We provided a proof 
of concept that miR-506-3p repressed proliferation and 
promoted apoptosis of OC cells, at least partially via inhibi-
tion of SIRT1 expression.

MiR-506-3p was shown to be downregulated in OC 
tissues compared with normal ovarian tissue [35], that is 
also confirmed in the current study. Moreover, miR-506-3p 
was robustly decreased in recurrent serous OC compared 
with primary OC tissues, consistent with the previous 
study [35], suggesting that the decreased expression of 
miR-506-3p was dramatically associated with advanced OC 
malignancy. Through regulation of vimentin or N-cadherin, 
miR-506 inhibited cell migration and invasion, thus associ-
ating with prognosis in epithelial OC [36]. MiR-506 was 
also involved in the regulation network of long noncoding 
RNA MALAT1/iASPP (inhibitor of apoptosis stimulating 
protein of p53) axis on OC growth [37]. Therefore, the 
miR-506-3p anti-proliferation and apoptotic signaling were 
found to be involved in the inhibition of tumor growth in 
OC [38, 39]. Especially, recent study showed that through 
directly targeting CDK4/6-FOXM1 axis, miR-506 inhibited 
cell proliferation and growth of OC [17]. Consistent with 

these researches, miR-506-3p inhibited cell proliferation 
and induced cell apoptosis in OC. Moreover, the potential 
target of miR-506-3p, SIRT1 was found and confirmed by 
luciferase reporter assay. The directly binding and negatively 
regulation of miR-506-3p on SIRT1 was firstly demonstrated 
in the present study.

SIRT1 was shown to be a target gene of various miRNAs 
in a variety of tumors [40–42]. SIRT1 regulated invasiveness 
of ovarian carcinoma cells [26] and OC progression [43], and 
overexpression of SIRT1 resulted in poor prognosis in serous 
epithelial OC [25]. Similarly, miR-142-3p was found to inhibit 
cell proliferation of OC via targeting SIRT1 [44]. However, 
the downstream targets of SIRT1 involved in OC progression 
remain unclear. In the present study, we firstly demonstrated 
that overexpression SIRT1 promoted cell proliferation and 
inhibited cell apoptosis of OC, suggesting the important 
role of SIRT1 in OC. Furthermore, we found that AKT and 
FOXO3a were the potential downstream targets of SIRT1. 
MiR-506-3p had no significant effect on AKT and FOXO3a 
expression, but decreased p-AKT and p-FOXO3a expression 
in OC cell lines. Moreover, addition of SIRT1 overexpres-
sion could reverse the inhibition ability of miR-506-3p on 
p-AKT and p-FOXO3a expression, confirming that SIRT1/
AKT/FOXO3a network was involved in the regulation of 
miR-506-3p on OC progression. SIRT1 was shown to increase 
the expression of p-AKT and promote AKT activity, thus 
facilitating for cell proliferation and preventing cell apoptosis 
of breast cancer [45]. Moreover, FOXO3 was considered as 
an important tumor suppressor in a variety of cancers [46], 
while AKT phosphorylated FOXO3a and thus inactivating 
this transcription factor [47]. However, due to the compli-
cated downstream targets of SIRT1, other signaling pathways 
involved in the regulation of miR-506-3p on OC need further 
to be investigated.

In summary, the present study demonstrated that 
miR-506-3p not only inhibited cell proliferation, but also 
promoted cell apoptosis in OC via negative regulation 
of SIRT1, thus inhibiting OC progression. This finding 
illuminated the relation between miR-506-3p/SIRT1/AKT/
FOXO3a regulatory axis and OC cell progression, suggesting 
potential application of miR-506-3p in treatment for OC. 
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