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Patient-derived organoids (PDOs) are emerging as preclinical models with promising values in personalized cancer 
therapy. The purpose of this study was to establish a living biobank of PDOs from patients with non-small cell lung cancer 
(NSCLC) and to study the responses of PDOs to drugs. PDOs derived from NSCLC were cultured in vitro, and then treated 
with natural compounds including chelerythrine chloride, cantharidin, harmine, berberine and betaine with series of 
concentrations (0.5–30 μM) for drug screening. Phenotypic features and treatment responses of established PDOs were 
reported. Cell lines (H1299, H460 and H1650) were used for drug screening. We successfully established a living NSCLC 
organoids biobank of 10 patients, which showed similar pathological features with primary tumors. Nine of the 10 patients 
showed mutations in EGFR. Natural compounds chelerythrine chloride, cantharidin and harmine showed anticancer activity 
on PDOs and cell lines. There was no significant difference in the 95% confidence interval (CI) for the IC50 value of chelery-
thrine chloride between PDOs (1.56–2.88 μM) and cell lines (1.45–3.73 μM, p>0.05). PDOs were sensitive to berberine (95% 
CI, 0.092–1.55 μM), whereas cell lines showed a resistance (95% CI, 46.57–2275 μM, p<0.0001). PDOs had a higher IC50 
value of cantharidin, and a lower IC50 value of harmine than cell lines (p<0.05, 7.50–10.45 μM and 4.27–6.50 μM in PDOs, 
3.07–4.44 μM and 4.69–544.99 μM in cell lines, respectively). Both PDOs and cell lines were resistant to betaine. Chelery-
thrine chloride showed the highest inhibitory effect in both models. Our study established a living biobank of PDOs from 
NSCLC patients, which might be used for high-throughput drug screening and for promising personalized therapy design. 
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Cell-based assays play key roles in basic research and 
drug screening [1, 2]. However, conventional 2D culture 
(cell) model-based anticancer therapies are often restricted 
to clinical studies due to the tumor heterogeneity [3–7]. 
Cell lines reflect part of the subtypes of tumors instead of all 
[4–6], which restricts the drug screening and development of 
precision medicine, as well as personalized therapy. 

Patient-derived xenograft (PDX) models and patient-
derived organoids (PDOs) have been exploited as new 
techniques for improving preclinical and personalized drug 
design as they recapitulate the heterogeneity of most primary 
tumors [8, 9]. PDX models and PDOs have similar genomic 
features and functional reports to primary tumors [10–13]. 
In comparison with the cellular 2D model, the establish-

ment of PDX models takes a long experimental time and is 
costly, and therefore is not suitable for wide usage and high-
throughput drug screening [11, 14, 15]. The PDOs, however, 
have the characteristics of relatively shorter incubation 
time and lower cost than PDX models that overcomes the 
limited reproducibility of PDXs and reduces the higher cost 
of PDXs [16]. Accordingly, PDOs are a perfect combination 
of high reproducibility, heterogeneity, time and experimental 
cost [17]. Organoids of patients with colon cancer [12, 18], 
prostate cancer [13, 19], pancreatic cancer [20], bladder 
cancer [21], gastric cancer [22], liver cancer [23, 24] and 
non-small cell lung cancer (NSCLC) [25] have already been 
established. However, the huge gap between the success rates 
of PDOs, which ranges from 16% [26] to 100% [25], suggests 



DRUG SCREEN BASED ON PDOS OF NSCLC PATIENTS 431

both the difficulty and high efficiency of establishing living 
biobank of PDOs from patients with tumors and the success 
rate might be dependent on the cancer type.

Lung cancer is the most common malignant tumor 
(11.6%) and the first leading cause of cancer-related death 
worldwide (18.4%) [27]. Major causes of the high death rate 
of lung cancer patients are drug resistance and null clinical 
drug design [28, 29]. Zhang et al. reported that cisplatin 
showed much higher half-maximal inhibitory concentra-
tion (IC50) values in the PDOs derived from NSCLC tissues 
compared to the majority of NSCLC cell lines [25], thus drug 
screening based on PDOs might provide more precise guide-
lines for clinical drug treatment.

Chemical compounds that possess pharmacological and 
biological activities showed assistant or leader roles in clinical 
therapy for tumors including NSCLC [30, 31], especially the 
compounds screened through high-throughput methods. 
However, the establishment of PDOs of lung cancer is 
relatively rare and reports only with scatted cases (1–3) were 
described until now [25, 32, 33]. Therefore, we established a 
living biobank of organoids derived from NSCLC patients (n 
= 10), and investigated the differences in the cell viability of 
both PDOs and three NSCLC cell lines in response to drug 
screening. The IC50 values of drugs in PDOs and cell lines 
were compared and discussed. This study is of great value 
for personalized therapy at least for the enrolled NSCLC 
patients.

Patients and methods

Patients, tissue collection, preparation and organoid 
establishment. Before experiments, an ethical approval 
(2019-48-01) was obtained from the ethics committees of 
Beijing Tuberculosis and Thoracic Tumor Research Insti-
tute, Beijing Chest Hospital, Capital Medical University, and 
written informed contents were obtained from 14 NSCLC 
patients. All experiments were performed following the 
Helsinki Declaration.

NSCLC tumor tissues were dissected, washed with cold 
PBS supplemented with antibiotics and cut into ~5 mm3 
pieces. Tumor pieces were further washed with Advanced 
DMEM/F12 (Thermo Fisher Scientific, Waltham, MA, USA; 
containing 1x Glutamax, 10 mM HEPES and antibiotics) and 
digested in 10 ml medium containing 2% fetal calf serum 
(FCS) and 2 mg/ml collagenase (Sigma-Aldrich, St. Louis, 
MO, USA; Cat. No. C9407) on a shaker at 37 °C for 1–2 h, 
followed by an addition of Advanced DMEM/F12 (2% FCS) 
and centrifugation at 400×g for 4 min. The pellet was further 
washed, resuspended and then centrifuged at 400×g for 
3 min. Dissociated cells were collected in Advanced DMEM/
F12 mixed in growth factor-reduced Matrigel (Corning Inc., 
Corning, NY, USA), which was set at 37 °C for 30 min for 
solidification. About 500 μl of complete human organoid 
medium (HOM) was added onto the surface of the solidified 
mixture of cell suspension/Matrigel.

HOM comprised of Advanced DMEM/F12 (Thermo 
Fisher Scientific) supplemented with series of additives 
as described by Lampis et al. [9] and Loredana et al. [26], 
including B27 (1×, Thermo Fisher Scientific), N2 (1×, 
Thermo Fisher Scientific), Glutamax (1×, Thermo Fisher 
Scientific), HEPES (10 mM, Thermo Fisher Scientific), 
antibiotics (1% penicillin-streptomycin; Gibco, Grand 
Island, NY, USA), bovine serum albumin (BSA, 0.01%, 
Gibco), L-glutamine (2 mM, Sigma-Aldrich), recombinant 
human epidermal growth factor (hEGF; 50 ng/ml, Invit-
rogen, Carlsbad, CA, USA), recombinant human fibroblast 
growth factor (hFGF)-10 (20 ng/ml, PeproTech, London, 
UK), hFGF-basic (1 ng/ml, PeproTech), Wnt3a (100 ng/ml; 
PeproTech), prostaglandin E2 (PGE2; 1 μM, R&D Systems, 
Minneapolis, Minnesota, USA), nicotinaminde (10 mM, 
Sigma-Aldrich), noggin (100 ng/ml, PeproTech), R-spondin 
1 (250 ng/ml, PeproTech), gastrin 1 (10 nM, PeproTech), 
A-83-01 (500 nM, PeproTech) SB202190 (10 μM, Sigma-
Aldrich) and N-acetylcysteine (1 mM, Invitrogen). HOM 
was replaced every 2–3 days during organoids development 
(about one week). When the organoids reached from 200 μm 
to 500 μm, a passage was performed every week. Organ-
oids were dissociated and passaged using TrypLE Express 
(Gibco) following the aforementioned protocol. Recovery 
Cell Culture Freezing Medium (Gibco) was used for the 
biobanking of living organoids (2×106 cells/tube, at –80 °C). 

Sequencing analysis for EGFR mutation. The epidermal 
growth factor receptor (EGFR) mutation detection was 
performed using gene sequencing. Genomic DNA samples 
were isolated from all tumor tissues using a QIAamp DNA 
FFPE Tissue Kit (Qiagen). Mutation of the EGFR was 
detected using a 56 genes panel, with reference to the human 
reference genome.

Pathological analysis. The primary tumor tissues and 
PDOs were collected and cleaned using PBS (1×, Invit-
rogen), following with fixation in formalin (10%, Invitrogen) 
and inclusion in paraffin. Sections of 5 μm were subjected 
to hematoxylin and eosin (H&E; Sigma-Aldrich) staining 
following manufacturers’ instructions. 

Cell lines and cell culture. Human lung cancer cell lines 
(EGFR wild type H1299, and H460; and EGFR mutant type 
H1650) were purchased from the Chinese Academy of 
Sciences Cell Bank (Shanghai, China). All cells were grown 
in RPMI-1640 medium (Gibco) or HOM (Thermo Fisher 
Scientific) supplemented with 2% FCS (Gibco) and 1% 
penicillin-streptavidin (Gibco) and maintained at 37 °C in 
5% CO2.

Drug treatments. Organoids (3–5 passages) and cell lines 
were seeded in 96-well plates and cultured in HOM with 
series of concentrations (0–30 μM) of natural compounds, 
including chelerythrine chloride, cantharidin, harmine, 
betaine, and berberine. All compounds were purchased 
from Sigma-Aldrich Inc. (St. Louis, MO, USA) and stored 
as 50 mM or 10 mM aliquots at –80 °C. Cells and organoids 
were cultured with natural compounds at 37 °C in 5% CO2 
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for 5 days. DMSO (0.1%) was used as negative control. Each 
experiment was performed at least for 3 duplicates.

Cell viability and drug sensitivity evaluation. The 
viability of the tumor organoids and cancer cells was deter-
mined using CellTiter-Glo® 2.0 Luminescent Cell Viability 
Assay Kit (Promega, Madison, WI, USA) and a microplate 
reader (BioTek, Vermont, USA). DMSO-treated cells and 
tumor organoids were regarded as control. Accordingly, the 
IC50 values in cell lines and organoids were calculated for all 
compounds using nonlinear regression (curve fit) in Prism 7. 
The 95% confidence interval (CI) was calculated. The differ-
ences in IC50 values of drugs between the two models were 
tested by unpaired t test. P < 0.05 was considered as statisti-
cally significant.

Results

Establishment of the living organoid biobank of NSCLC 
patients. A total of 14 tumor samples were derived from 14 
patients (male = 6, and female = 8, aged 47–78 years) with 

tumors at stage I–III with or without lymph node metas-
tasis. Of the 14 tumor samples, 10 had >50% frequency of 
G>A mutation at chr7:55229255 in EGFR (Table S1). After 
organoid induction for one week, 10 tumor tissues gener-
ated into organoids with diameter ≥200 µm, suggesting the 
vigorous cell viability and a success rate of 71.43% (10/14). 
Four tumor tissues failed to generate into organoids because 
of the low cell proliferation rate and density.

HE staining suggested that PDOs (21–35 days) had similar 
morphologies with the primary NSCLC tissues (Figure 1). 
However, the 10 PDOs of NSCLC tissues showed different 
histological structures between patients (heterogeneity), 
ranging from thin-walled cystic structures to dense struc-
tures without lumens, and were similar with that of corre-
sponding primary NSCLC tissues.

Drug screening. The PDOs of NSCLC patients were 
then frozen in liquid nitrogen, stored at –80 °C and cultured 
directly before the drug screening. The cell viability of 
biobanked PDOs was >95% after thawing and generated 
PDOs with a diameter of >200 μm after 7 days following 

Figure 1. Histology of PDOs and primary tumor tissues from patients with NSCLC. Bar = 100 μm.
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difference in the IC50 value of chelerythrine chloride and 
betaine between the PDOs and cell lines (p>0.05; Figure 4). 
Significant differences in the IC50 values of cantharidin, 
harmine and berberine between two models were observed 
(p<0.05). The IC50 value of harmine and berberine in PDOs 
was significantly lower than that in cell lines, while the IC50 
value of cantharidin in PDOs was significantly higher than 
that in cell lines (p<0.05).

Discussion

Organoids, novel stem cell-based models, are widely used 
for pre-clinical model establishment. A variety of tumor 
organoids have been established by adding a series of growth 
factors, including Wnt, R-spondin 1, EGF and Noggin [9, 18, 
26, 34, 35]. We successfully established the living biobank 
of PDOs derived from 10 NSCLC patients, which showed 
efficacy for drug screening. We confirmed that PDOs derived 
from patients showed similar pathological and marked 
features with primary tumor tissues. The tumor cells of the 
4 patients proliferated slowly and did not reach the expected 
level. We have compared the characteristics from patients 
with and without successful organoid generation and found 
that these four patients were in poor physical condition, 

HOM culture (data not shown). This suggested the high 
performance of the established living biobank of organoids 
from 10 NSCLC patients.

The PDOs and cell lines (H1299, H460 and H1650) were 
cultured with drugs or 0.1% DMSO (control) for 5 days, 
and relative cell viability was calculated accordingly. We 
found the 10 PDOs were sensitive to chelerythrine chloride, 
with low IC50 value (95% CI, 1.55–2.88 μM; Figure 2). Three 
NSCLC cell lines (H1299, H460 and H1650) were also sensi-
tive to chelerythrine chloride, with equivalent IC50 values 
(95% CI, 1.45–3.73 μM). Cantharidin and harmine showed 
moderate inhibitory effects on the cell viability of PDOs (IC50 
95% CI, 7.50–10.45 μM and 4.27–6.50 μM) and cell lines 
(IC50 95% CI, 3.07–4.44 μM and 4.69–544.99 μM), respec-
tively. We observed that berberine had an obvious inhibitory 
effect on the cell viability of organoids, with low IC50 value 
(95% CI, 0.09–1.55 μM), but not on NSCLC cell lines (95% 
CI, 46.57–2275 μM). Both PDOs and cell lines were resistant 
to betaine (95% CI, 153.50–9113123 μM and 14261 μM – ∞, 
respectively). The heatmap analysis of the logIC50 showed 
that chelerythrine chloride had the best anticancer activity 
and the least toxicity among the 5 compounds (Figure 3).

The differences in the IC50 values of drugs between the 
PDOs and cell lines were analyzed. There was no significant 

Figure 2. The relative cell viability of PDOs and NSCLC cell lines in response to drug treatments. X-axis represents the log2 transformation of the drug 
concentrations (μM for PDOs and nM for cell lines) and the corresponding cell viability, respectively.
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which may be one of the main factors for an unsuccessful 
generation. Drug screening suggested that PDOs had equiv-
alent sensitivity to chelerythrine chloride compared with 
NSCLC cell lines. Both models showed resistance to betaine. 

Moreover, we observed that PDOs, rather than NSCLC cell 
lines, had an obvious sensitivity to berberine and harmine. 
These results might be of great value for the introduction of 
these compounds into personalized therapies for these 10 
patients in our study.

Tumors arise from the stepwise accumulation of numerous 
driver alterations [36], which is mainly induced by gene insta-
bility-induced mutations and the subsequent tumor genome 
evolution [37]. That is the causality of tumor heterogeneity. 
The maintenance of genotypic and phenotypic features of the 
primary tumor by PDOs governs the value of these in vitro 
models [38, 39]. The widely used cancer cell lines only reflect 
partial tumor subtypes and could not succeed tumor hetero-
geneity [4–6, 40], and therefore showed relatively low values 
in clinical practice compared with PDOs or PDX models 
[3–7]. We identified that the established PDOs, as well as the 
primary tumor tissues from NSCLC patients, had hetero-
geneity. However, PDOs basically mapped the histological 
structures of corresponding primary tumors. All these results 
suggested that there was tumor heterogeneity both between 
individuals and PDOs, and the PDOs inherited the heteroge-
neity of NSCLC patients.

It has been reported that organoids are amenable to the 
detection of gene-drug association [41]. The amenability 
of tumor organoids to high-throughput drug screening has 
been validated by the spectrum of genetic changes [41, 42]. 
PDOs show superiority to cell lines in the stability of the 
genetic spectrum [11, 12, 42, 43]. The significant differences 
in the gene expression profiles between solid tumors and 
corresponding cell lines have been demonstrated previously 
[44, 45]. In addition to the phenotypic heterogeneity, tumor 
organoids maintain the physiologic changes of primary 
tumors, including hypoxic status, oxygen consumption, 
specific expression profiles of genetic and epigenetic marks, 
sensitivity or resistance to drugs or treatments [46]. Hence, 
the drug screening with established PDOs was of great value 
for individualized therapy for the 10 NSCLC patients.

Based on the aforementioned superiorities, PDOs recapit-
ulate most characteristics from primary tumors, which 
conquer a lot of shortcomings of cell lines and effectively 
predict the clinical activity to compounds [10]. Studying of 
the drug resistance mechanisms in PDOs or PDX models 
helps to identify innovative and precision personalized 
therapies [46–48]. However, the application of PDX models 
usually takes too long (>6 months) and is expensive, while 
PDOs have an acceptable period (2–3 months) and costs, 
which is suitable for preclinical high-throughput drug 
screening. Vlachogiannis et al. established a gastrointes-
tinal PDOs living biobank and screened targeted drugs for 
chemotherapy [49]. They confirmed that the patients’ clinical 
responses could be accurately recapitulated by established 
PDOs, with 100% sensitivity, 93% specificity, 100% negative 
prediction accuracy and 88% positive prediction accuracy. 
Our drug screening using established PDOs living biobank 
of NSCLC patients suggested the efficiency of PDOs applica-

Figure 3. Heatmap analysis of the logIC50 values of drugs in PDOs and 
cells.

Figure 4. Comparison between the IC50 values of drugs between PDOs 
and cells. *p<0.05 and **p<0.01, respectively.
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tion for drug screening. We found no significant difference 
between PDOs and NSCLC cell lines in the IC50 value of 
chelerythrine chloride. Chelerythrine chloride showed the 
highest inhibitory effect on PDOs and cell lines, showing the 
best anticancer activity. We confirmed NSCLC PDOs were 
sensitive to berberine (95% CI, 0.09–1.55 μM), while cell 
lines showed resistance to it (95% CI, 46.57–2275 μM), and 
cantharidin had lower IC50 values in cell lines than PDOs. 
Berberine targets EGFR and suppresses the growth of cancer 
cells by inhibiting EGFR activation. We identified that all the 
PDOs had EGFR mutation phenotypes, with G>A mutation 
at chr7:55229255, while two of the three cell lines (H1299 
and H460) were EGFR wild type. This might be responsible 
for the resistance to berberine. These results showed that cell 
lines might have differences in drug-gene associations and 
genotypes from PDOs.

Chelerythrine chloride is an inhibitor of the protein 
kinase C (PKC) signaling pathway and functions by inducing 
tumor cell toxicity and delaying tumor growth [50, 51], as 
well as the induction of tumor cell apoptosis via mitochon-
drial pathway [52]. Studies have shown that chelerythrine 
chloride blocked the PKCzeta pathway and EGF-induced 
tumor cell chemotaxis in breast cancer cells [53]. Canthar-
idin, which is an active components of mylabris commonly 
used for molluscum contagiosum treatment, induces DNA 
damage, suppresses cell growth, activates cell autophagy and 
impairs cell migration and invasion via multiple signaling 
in lung cancer cells, including PI3K/Akt/mTOR, urokinase 
plasminogen activator (UPA), ERK1/2, c-Jun N-terminal 
kinase (JNK), nuclear factor-κB (NF-κB) and p38 mitogen-
activated protein (MAP) kinase [54–56]. The anticancer 
activity of harmine in human cancers has been evidenced. 
Harmine induces proliferation inhibition, apoptosis and 
pro-death autophagy in gastric cells, and shows synergistic 
effects with paclitaxel [57, 58]. However, the efficiency, sensi-
tivity and specificity of these compounds in the 10 NSCLC 
patients should be further validated in clinical practices. In 
conclusion, we confirmed that the established PDOs living 
biobank of NSCLC patients might provide a new opportu-
nity for drug screening and personalized therapy for these 
patients with NSCLC. We confirmed that all the 10 PDOs 
had EGFR mutation phenotypes. The drug treatments with 
chelerythrine chloride, cantharidin, harmine and berberine 
in PDOs showed the anticancer performance. Chelerythrine 
chloride showed the highest inhibitory activity to PDOs 
of NSCLC patients, followed by cantharidin and harmine. 
These results showed that PDOs drug screening might be 
a promising strategy for personalized therapy for NSCLC 
patients. The clinical efficiency, sensitivity and specificity 
of these compounds, as well as the gene-target association 
mechanisms underlying these compound responses in PDOs 
should be validated.
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