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Mitochondria are highly dynamic organelles involved in many cellular functions. Beyond their central role in metabo-
lism, they also take a part in maintaining calcium homeostasis, cell death, immunity, and ROS production. Changes in these 
functions have been shown to be crucial for the adaptation and survival of cancer cells. Mitochondria, therefore, constitute 
a promising target for the development of novel anticancer agents. The triphenylphosphonium (TPP+) moiety has been 
widely used to target molecules into mitochondria. TPP+ derivatives of a variety of conventional cytostatic drugs, natural 
substances, metformin, antioxidants or a range of newly synthesized molecules have shown promising results against cancer 
cells. In this review, we discuss biochemical differences between cancer cells and normal cells with a specific focus on 
mitochondria, and how mitochondrially targeted molecules can be used to selectively affect mitochondrial function in 
normal and cancer cells. We summarize the published data on mitochondrially targeted anticancer agents and propose 
future research avenues. 
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Role of mitochondria in cancer

Cancerous tumors represent a collection of cells that 
have undergone a malignant transformation characterized 
by altered metabolism, immune evasion, genome instability 
and mutations, resistance to cell death, uncontrolled growth 
and proliferation. Since mitochondria are major metabolic 
organelles, their contribution towards tumor growth, 
including mitochondrial DNA (mtDNA) mutations, altera-
tions in oxidative phosphorylation (OXPHOS), calcium and 
iron homeostasis or process of apoptosis, have been investi-
gated in detail.

One of the first findings in this area was that cancer cells 
tend preferentially to convert pyruvate to lactate even under 
aerobic conditions, a phenomenon known as the Warburg 
effect [1–3]. One of its effects is the diffusion of protons thus 
produced from the proximal tumor microenvironment into 
neighboring tissues causing acidification and tissue remod-
eling leading to a local invasion [4]. Another corollary is a 
symbiosis of two different subpopulations of cancer cells, 

where the first one produces lactate and the second one uses 
the lactate as a source of energy (Cori cycle at the cellular 
level) [5, 6]. The lactate production is further accentuated 
under hypoxic conditions in some cancer cells [7]. Even 
if this results in less efficient metabolism in terms of ATP 
production, it provides sufficient energy for cell proliferation.

During cell proliferation, there is a large demand for 
lipids, amino acids, and nucleotides, the building blocks of 
new cells. Not only ATP is required for the synthesis of these 
materials but also large amounts of acetyl-coA (a source of 
carbons) and NADPH (a source of electrons). In fact, if we 
take the ratio of these products, more equivalents of NADPH 
and carbons are needed compared to molecules of ATP [3]. 
Even though it has been believed for decades that the factors 
mentioned above are the reason for cancer cells disposing of 
OXPHOS, the Krebs’ cycle and the mitochondrial respira-
tory chain are not always switched off, in fact, their activity 
depends on the tumor type, stage or size as recently reviewed 
by Jose et al. [8]. The Krebs’ cycle, although often modified 
or truncated, generates intermediates necessary to synthesize 
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metabolites such as lipids or nucleotides [9, 10], with gluta-
mine shown to be an important resource [11]. Additionally, 
specific functions of the electron transport chain such as 
enabling the biosynthesis of aspartate [12] or the genera-
tion of ROS important for modulation of cell cycle progres-
sion and proliferation have been reported [13, 14]. In some 
tumors, the fate of pyruvate seems to be dependent on other 
factors, such as the activity of enzyme pyruvate kinase M2, 
one of the rate-limiting enzymes in glycolysis. The activity 
of pyruvate kinase M2 has been shown to be regulated via 
mTOR signaling. mTOR phosphorylates Mfn2, leading to 
its interaction with pyruvate kinase M2. This mTOR–Mfn2–
pyruvate dehydrogenase kinase signaling axis couples glycol-
ysis and OXPHOS to modulate cancer cell growth [15].

The role of mtDNA in cancer is less clear, however, recent 
experiments confirm that mtDNA mutations can impart 
malignant properties on cells, causing an oncogenic or 
metastatic metabolic switch. On the other hand, mtDNA 
mutations resulting in severe mitochondrial dysfunction 
might have a detrimental effect on the cancer cell [16].

Regulated cell death by apoptosis is an active process, 
which is critical in preventing tumorigenesis. Indeed, resis-
tance to cell death is a classical hallmark of cancer, whereby 
cancer cells exhibit suppressed apoptosis thus enabling 
further transformation, with multiple levels of regulation 
in place [17]. The Bcl-2 family of proteins, which includes 
anti-apoptotic, pro-apoptotic and BH3-only members, is 
the master regulator of this process [18] playing roles in the 
sensing of cellular stress (i.e. DNA damage [19] or ER stress 
[20]) as well as in the initiation of apoptosis through regulating 
mitochondrial integrity in a process known as mitochondrial 
outer membrane permeabilization (MOMP). This is followed 
by the activation of executioner caspases finally resulting in a 
loss of the inner mitochondrial membrane potential and ATP 
synthesis and an increased level of reactive oxygen species 
[21]. During tumorigenesis, the apoptotic program can be 
deregulated at several levels of apoptotic regulation, which 
can lead to cancer initiation and also drive cancer progres-
sion [22, 23].

Mitochondrial Ca2+ also plays a crucial role during 
cancer. It is known to be important in apoptosis [24, 25], 
regulation of cellular energetics [26], and cell migration 
[27, 28], all of which are disrupted in cancer. Located in the 
inner mitochondria membrane, the mitochondrial calcium 
uniporter (MCU) and its regulators are responsible for the 
main entry of calcium into the matrix [29–32]. Studies 
searching for potential correlations between the expression 
of MCU complex components and tumor progression have 
suggested that the MCU complex and its components have 
different roles in different cancer types and stages [33, 34]. As 
calcium plays a role in cell migration, MCU and mitochon-
drial calcium uptake enhance metastasis [35, 36]. On the 
other hand, it has been shown that downregulation of MCU 
in colon cancer cells and reduced mitochondrial calcium 
uptake also contributes to resistance to apoptotic signals [34].

Many studies have shown that some of the neoplastic 
diseases are linked to abnormalities of iron metabolism 
[37–41]. Mitochondria are one of the key organelles in iron 
homeostasis [42], therefore, it is not surprising that this 
presents another possible role in tumorigenesis. Indeed, it 
has been suggested that mitochondrial iron plays a role in 
the metabolic programming and inflammation processes in 
tumor development [43, 44].

Changes in the mitochondrial function in cancer cells are 
summarized in Figure 1.

Targeting mitochondria using triphenylphosphonium

Triphenylphosphonium (TPP+) and its preferential 
accumulation in mitochondria. As mentioned above, 
mitochondria are functionally versatile structures involved 
in indispensable activities for cell survival. Therefore, the 
possibility of manipulating their functions such as OXPHOS, 
calcium homeostasis or the regulation of apoptosis makes 
them ideal targets for specific anticancer drug delivery. 
However, getting drugs into mitochondria is not so straight 
forward due to the necessity to cross several lipid bilayers 
and in particular, the inner mitochondrial membrane, which 
is highly selectively permeable for molecules to enter the 
matrix [45]. Despite this obstacle, different methods have 
been developed to target molecules into mitochondria, such 
as mitochondria targeting peptides [46], mitochondria-
penetrating peptides [47], gramicidin S [48] or different 
lipophilic cations, including rhodamine [49] or triphe-
nylphosphonium and its derivatives [50, 51]. Out of these 
targeting molecules, triphenylphosphonium (TPP+) deriva-
tives have been used perhaps most commonly. One reason 
for this is because they can be used to deliver different bioac-
tive molecules directly into the mitochondrial matrix, while 
peptides end up mostly localized to the inner mitochondrial 
membrane (IMM) [52, 53]. Another reason for its relatively 
wide use is the comparably easy chemical manipulation in 
terms of conjugation with bioactive compounds [54]. In this 
review, we will, therefore, focus mainly on mitochondrial 
drug targeting based on TPP+ derivatives.

Structurally the TPP+ moiety is composed of three 
hydrophobic phenyl groups that surround a positively 
charged phosphorus atom. There are three main reasons 
why the conjugation with TPP+ benefits mitochondrial drug 
delivery; a) increased lipophilicity of phenyl groups helps 
to create a large hydrophobic surface area b) spreading of 
positive charge across the molecule c) phenyl groups steri-
cally protect the phosphorus atom shielding it from solva-
tion [50, 55]. These chemical properties in combination 
with the large mitochondrial membrane potential lead to 
its accumulation inside mitochondria. In fact, the uptake 
of TPP cations into mitochondria increases approximately 
10 fold for every 61.5 mV of membrane potential at 37°C 
leading to 100–500 fold accumulation in average mitochon-
dria [56], see Figure 2.
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Preferential accumulation of TPP+ derivatives in 
mitochondria of cancer cells compared to normal cells. 
Since TPP+ derivatives accumulate in functioning mitochon-
dria of any cells, the obvious question is what mechanism 
may account for their relative selectivity for cancer cells. One 
of the explanations for this phenomenon is that cancer cells 
have both a higher plasma membrane potential and a higher 
mitochondrial membrane potential [57, 58]. One study 
reported that the difference between control and carcinoma 
epithelial cell lines was approximately 60 mV [59]. A similar 
increase in the mitochondrial membrane potential was shown 
in epithelial adenocarcinomas, particularly colon adenocar-
cinoma or tumorigenic bladder epithelial cell lines [57, 60, 
61]. As in vitro studies have their own limitations, these 
results were also confirmed in vivo [62]. A study on breast 
carcinoma cells in situ produced similar results, however, a 

small percentage of patients showed instead a similarity with 
non-malignant epithelium [63]. This variability could be due 
to the heterogeneity of these tumors in vivo, where they are 
highly hormone dependent. Han et al. showed that TPP+-
conjugated doxorubicin overcomes the resistance of breast 
cancer cells but exhibits a lack of selectivity, which may 
suggest that there is no difference in membrane potential 
compared to control cells [64]. Higher membrane potential 
was also not detected in leukemias, lymphomas, neuroblas-
tomas or osteosarcomas [57].

It is reasonable to assume that the observed increase 
in the mitochondrial membrane potential in cancer cells 
results from structural or functional differences of some 
components of the organelle characteristic for this patho-
logical process, such as disruptions in mitochondrial respi-
ratory chain complexes, ATP synthase, adenine nucleotide 

Figure 1. Mitochondrial function in cancer. A scheme of changes in mitochondrial functions in cancer cells. These include increased production of 
lactate, increased synthesis of lipids, amino acids and nucleotides, truncated function of the Krebs’ cycle and the mitochondrial respiratory chain lead-
ing to increased production of ROS; a mutation in mtDNA and calcium homeostasis disbalance (increased/decreased levels) and increased levels of 
iron. For relevant references see the text.
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I and complex III. The observed effect is proportional to the 
increase of the length of the alkyl chain and concentration 
[75]. When mouse kidney mesangial cells were treated with 
decyl-TPP+, a decrease in oxygen consumption rate was 
observed, however, interestingly this effect reverted after 
20 minutes, and oligomycin did not cause a decrease in the 
oxygen consumption rate (OCR) and the addition of FCCP 
resulted in an inhibition, rather than stimulation of respira-
tion [74]. Decyl and dodecyl TPP derivatives also cause the 
collapse of the mitochondrial membrane potential, likely due 
to direct disruption of the lipid bilayer structure. In all cases, 
different TPP+ derivatives, regardless of the length of the 
alkyl chain and of the specific cell line used, cause an increase 
of the extracellular acidification rate (ECAR) suggesting a 
defect in OXPHOS [74–76].

TPP+ derivatives also cause an inhibition of calcium efflux 
from mitochondria through a direct interaction with Na+/
Ca2+ exchanger [77, 78]. A toxic effect of TPP+ derivatives 
was also demonstrated in vivo [79].

The effect of the TPP+ moiety itself on mitochondria 
in cancer cells. The TPP+ moiety is a common feature of 
many different bioactive compounds tested for anti-cancer 
effects. Some believe that the TPP+ moiety itself might have 
anti-cancer effects; however, a detailed mechanism remains 
to be elucidated. As mentioned above, the main function 

translocator (ANT) or membrane lipid structure. Indeed, 
some cancer cell lines show alterations in various subunits 
of ATP synthase or cytochrome c oxidase resulting in their 
lower activity [65, 66]. This was also observed in a range of 
tumors [67–71]. This may have a negative impact on proton 
pumping and/or transport back into the matrix, which may 
result in changes in the mitochondrial membrane potential. 
There are, however, also reports suggesting the contrary – an 
increase not only in the expression of ATP synthase [72] but 
also its activity together with an increase of activity of the 
respiratory chain complexes [73] in breast cancer cells.

The discrepancies among the reports raise the question, 
whether previously shown disruptions in ATP synthase and 
cytochrome-c oxidase are the main or only mechanisms for 
the observed higher membrane potential within most of the 
cancer cells. However, what other factors might be involved 
and influence the uptake of TPP+ derivatives is currently 
not clear and the precise mechanism of the selectivity of 
mitochondrially targeted substances for cancer cells remains 
to be further elucidated.

The effect of the TPP+ moiety itself on mitochondria 
in normal cells. While some studies of mitochondrially 
targeted compounds seem to assume that their effects are 
largely or entirely caused by the bioactive component, there 
is solid evidence that the TPP+ moiety itself has significant 
effects on the mitochondrial function. TPP+ derivatives may 
cause respiratory chain and Krebs cycle dysfunction, most 
likely via different mechanisms [74–76].

The first mechanism is most readily observed in TPP+ 
derivatives with a shorter alkyl chain, such as triphenylmeth-
ylphosphonium (TPMP). This molecule is less hydrophobic 
(compared to other TPP+ derivatives substituted with longer 
alkyl chain), therefore a higher amount will be accumulated 
within the mitochondrial matrix, where it interacts with the 
2-oxoglutarate dehydrogenase complex, a key enzyme of 
Krebs cycle, and causes its inhibition resulting in the inhibi-
tion of the mitochondrial respiration [76]. Interestingly, one 
study has shown that while TPMP decreases basal oxygen 
consumption rate, it causes a greater stimulation of respira-
tion with FCCP after oligomycin [74].

The more hydrophobic derivatives tend preferentially to 
associate with the inner mitochondrial membrane; therefore 
their concentration within the mitochondrial matrix is lower 
compared to shorter derivatives. However, they directly 
interact with complexes of inner mitochondrial membrane, 
respiratory chain complexes included.

In the simple case of alkyl derivatives, their inhibitory 
effect on the respiratory chain complexes appears to corre-
late with the carbon chain length. Propyl or butyl derivatives 
show virtually no changes in any of the bioenergetic param-
eters compared to control, however, longer and more hydro-
phobic derivatives such as heptyl, decyl or dodecyl are far 
from inert. In C2C12 cells, it has been shown that long chain 
alkyl derivatives increase proton leak and decrease maximal 
respiration, with the inhibition mostly centered on complex 

Figure 2. Uptake of TPP+ derivatives by mitochondria. The uptake of the 
TPP+-conjugated compound X into the cytoplasm from the extracellular 
space is driven by the plasma membrane potential and its subsequent ac-
cumulation in mitochondria is driven by the mitochondrial membrane 
potential. Both processes are happening according to the Nernst equa-
tion. The plasma and mitochondrial membrane potentials (Δψ) are indi-
cated. Scheme modified from Murphy [106].
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of this moiety is to specifically target mitochondria leading 
to a higher accumulation of the molecule in the mitochon-
dria, therefore potentiating the effect of bioactive compound 
[80], bypassing unwanted DNA repair mechanisms [81], 
decreasing the adverse effects [82] or preventing drug efflux 
mechanisms [64, 82]. Having anticancer drugs conjugated 
to the TPP+ moiety increases their penetration into tumor 
mitochondria due to their often higher mitochondrial 
membrane potential (as discussed above).

These findings seem to be consistent in most of the 
reported studies, but there are also contrary findings. Cheng 
et al. reported that decyl-TPP+ itself did not show any selec-
tivity to pancreatic ductal adenocarcinoma cells compared 
to non-malignant cells. Interestingly, when decyl-TPP+ was 
conjugated to metformin, there was a higher selectivity to 
cancer cells compared to normal cells, where the precise 
mechanism of this observed effect was not specified [83].

Some studies suggest that the moiety itself is mostly inert 
[64, 81, 83, 84], and the conjugation may lead to the inertness 
of the whole pro-drug preventing it from full activation [85]. 
On the contrary, other studies have suggested that TPP+ itself 
can potentiate or modulate the cytotoxic effect. The length of 
the alkyl chain of TPP+ derivatives has an impact on the effec-
tiveness of the drug [83], as does the increase of the number 
of the TPP+ moieties [85]. This finding is at odds with the 
report from Ross et al., who showed that bis-TPP+ dications 
struggle to accumulate in mitochondria [86]. Doxorubicin 

itself induces apoptosis, however, when conjugated to TPP+ 
it has been shown to trigger necrosis [87].

This summary clearly shows that the effects of the TPP+ 

moiety with or without a conjugated bioactive compound 
require much more detailed research before a rational design 
of effective anticancer agents becomes possible.

Mitochondrially targeted anticancer agents

Bioactive compounds conjugated to TPP+ so far 
appearing in the literature can be divided into four catego-
ries: 1) conventional cytotoxic drugs 2) natural substances 3) 
molecules originally used for the treatment of diseases other 
than cancer or 4) new TPP+ derivatives.

Cytotoxic drugs. A range of commonly used cytotoxic 
agents such as cisplatin, doxorubicin, paclitaxel or tamox-
ifen has been conjugated to TPP+. Additionally, some of 
these derivatives have been further connected to different 
nanocarrier systems and tested for specific mitochondrial 
drug delivery [81, 82, 87].

The main target of cisplatin is nuclear DNA, where it 
functions by directly binding to purine bases leading to DNA 
damage. However, its resistance to DNA repair mechanisms 
and non-selectivity to cancer cells often complicates the 
treatment and leads to lower efficacy [88–90].

Studies have shown that cisplatin conjugated to TPP+ 
preferentially accumulates inside mitochondria, therefore 

Figure 3. Chemical structures of TPP+-conjugated anticancer agents. Part 1.
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bypassing its nuclear DNA mechanisms. TPP+-cisplatin 
accumulated within mitochondria binds to mtDNA, inhibits 
mitochondrial respiration and the mitochondrial antioxi-
dant enzyme thioredoxin reductase (TrxR), and causes 
cristae remodeling, resulting in enhanced cytotoxicity even 
in cisplatin-resistant cells. These compounds also showed 
lower toxicity towards normal cells. For chemical structures 
see Figure 3; 1a–d [81, 85, 91].

Tamoxifen conjugated to TPP+ (MitoTAM, Figure 3; 
1e) accumulates in mitochondria of breast cancer cells and 
tumors overexpressing Her2 oncogene and causes disrup-
tions of supercomplexes, inhibition of complex I, dissipation 
of the membrane potential and an increase of ROS produc-
tion. Additionally, it exhibited cytotoxicity against cancer cells 
both in vitro and in vivo without inducing senescence [92, 93].

Doxorubicin, when conjugated to TPP+ (Figure 3; 1f), acts 
mainly through the disruption of mitochondrial metabo-
lism rather than the classical, well-studied interaction with 

topoisomerase II in the nucleus. In an interesting twist to 
the conventional targeting method, attaching TPP+ to a 
nanoparticle carrying doxorubicin induced severe and acute 
cytotoxicity in prostate carcinoma cells, which was mainly 
of a necrotic nature, compared to doxorubicin itself [87]. 
However, this is not in accordance with other reports showing 
increased cytotoxicity via apoptosis in melanocytes treated 
with TPP+-doxorubicin [64]. TPP+-doxorubicin combined 
with hyaluronic acid caused an increase in ROS production 
and cytotoxicity in breast cancer cells. This effect was also 
observed in tumor-bearing zebrafish where it significantly 
inhibited tumor growth and prolonged survival compared to 
unconjugated doxorubicin [82].

TPP+-conjugated nanocarriers loaded with paclitaxel 
(Figure 3; 1g, 1h) specifically targeted mitochondria in cancer 
cells, effectively killing the cells in vitro and inhibiting tumor 
growth in vivo in 4T1 tumor-bearing mice. At the same time, 
no toxic side effects were observed in animals [94, 95].

Figure 4. Chemical structures of TPP+-conjugated anticancer agents. Part 2.
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Natural substances. Glycyrrhetinic acid, a pentacyclic 
triterpenoid obtained from the plant Glycyrrhiza glabra, has 
been shown to have anti-tumor activity. However, its low 
bioavailability, poor aqueous solubility, and limited intra-
cellular accumulation limit its usage. The conjugation of 
glycyrrhetinic acid to TPP+ eliminates these obstacles. This 
compound (Figure 4; 2a) specifically targets mitochondria 
to induce cell cycle arrest, inhibits cancer cells proliferation 
and migration. Additionally, it causes the collapse of the 
mitochondrial membrane potential, increases the produc-
tion of reactive oxygen species and activates pro-apoptotic 
proteins triggering apoptosis with some selectivity for cancer 
cells compared to normal cells [96].

Similar to glycyrrhetinic acid, betulinic acid is a highly 
hydrophobic compound and has poor blood solubility and 
therefore limited intracellular accumulation. However, when 
conjugated to TPP+ its properties are markedly modified. It 
leads to increased bioavailability and higher cytotoxic activity 
against cancer cells, due to its preferential accumulation in 
mitochondria, where it suppresses mitochondrial respiration 
and induces the apoptotic cascade (Figure 4; 2b) [97].

Conventional drugs with a new role in cancer – 
metformin and antioxidants. Metformin is a standard drug 
used to treat type 2 diabetes mellitus. There is overwhelming 
evidence that patients suffering from diabetes mellitus 
had a significantly increased risk for cancer, however, in 
patients treated with metformin this risk was decreased 
[98]. In another study, metformin showed inhibition of cell 
and tumor growth and an enhanced response to ionizing 
radiation in non-small cell lung cancer [99]. These effects 
of metformin were potentiated by its conjugation to TPP+, 
which led to increased bioavailability. Pancreatic cancer 
cells treated with TPP+-metformin (MitoMet, Figure 4; 3a) 
showed higher radiation sensitivity, increased activation of 
adenosine monophosphate kinase (AMPK) and a decrease of 
a redox responsive transcription factor FOXM1. Addition-
ally, there was a significant decrease of oxygen consumption 
rate, inhibition of complex I activity and increased produc-
tion of ROS with an inhibition of cell growth. Suppression of 
tumor growth upon treatment with MitoMet was confirmed 
also in vivo [83].

The mechanism of action of many anticancer drugs, 
including those mentioned above, is based on an increase 
of ROS above threshold levels either via disruptions of the 
respiratory chain or by other, so far not well-described 
mechanisms, often resulting in apoptosis. At the same time, a 
certain elevation of ROS in cancer cells compared to normal 
cells is crucial to causing their genetic instability [100], 
as well as promoting cell growth and proliferation [101]. 
Based on this, mitochondrial targeted antioxidants, such as 
MitoTEMPO or MitoQ (Figure 4; 3b, 3c), have been tested as 
potential anticancer drugs showing promising results [102].

New TPP+ derivatives. Not only different chemothera-
peutic drugs conjugated to TPP+ have been shown to have 
promising anticancer effects, but also other TPP+ derivatives. 

Tetraphenylphosphonium cation and other phosphonium 
cations selectively inhibited the growth of human pancre-
atic carcinoma-derived cells [103]. 3-chloropropyltris(4-
dimethylaminophenyl) phosphonium chloride (APPCL) 
and 3-iodopropyltris(4-dimethylaminophenyl) phospho-
nium iodide (APPI) showed promising anticancer effects, 
including cell lines and mouse models resistant to conven-
tional drugs [104]. Their chemical structures are shown in 
Figure 4; 4a, 4 b.

Another report showed that TPP+ derivatives with 
(E)-(prop-1-en-1-yl), 2-(oxazol-4-ylmethyl) or 2-ethyl-4-(2-
oxo-2H-chromen-3-yl) (Figure 4, 4c–e) caused a decrease 
in the OCR, a concomitant increase of ROS, which altered 
redox sensitive cell signaling pathways resulting in an inhibi-
tion of growth factor-mediated signaling, promotion of cell 
cycle arrest and induction of apoptosis [105].

Esterified phenol derivatives conjugated with the TPP+ 
cation (Figure 4; 4f–g) showed a specific cytotoxic effect 
against some cancer cell lines, particularly lung cancer 
and osteosarcoma. The differences in cytotoxicity between 
various cell lines might correlate with their metabolic differ-
ences. PGC-1α, a regulator of mitochondrial biogenesis, is 
inactivated by these compounds in lung cancer cells, resulting 
in a reduction of mitochondrial mass and energy metabo-
lism. The high accumulation of these compounds within 
mitochondria leads to a higher production of ROS, which 
results in apoptosis. Interestingly, the non-esterified versions 
failed to accumulate sufficiently in mitochondria [84].

Conclusion

Mitochondria have become an exciting new drug target 
for anticancer therapy. A wide range of bioactive molecules 
conjugated to TPP+, and indeed simple TPP+ derivatives 
themselves, have shown promising anti-tumor activity 
despite the fact that the mechanisms of their actions remain 
unclear. In order to further the research into new, mitochon-
drially targeted anticancer agents and perhaps to bring about 
the promise of more cancer-selective, less damaging treat-
ments, more attention needs to be brought to the molecular 
mechanisms of TPP+ interactions inside cells and mitochon-
dria, on their effects on energy metabolism and, crucially, on 
their unexpected and adverse effects.

From the review of literature, it is clear that the conjuga-
tion of a biologically active molecule often significantly alters 
its mechanism of action and its molecular targets, while at 
the same time conserving or enhancing its antiproliferative 
effects. While it is conceivable that there exist biologically 
inactive TPP+-conjugated compounds that do not appear 
in the literature due to the fact of their inefficacy (the well-
known negative result gap), the wide range of molecules 
that, after conjugation with triphenylphosphonium, exhibit 
cytotoxic effects suggests that the TPP+ moiety is often more 
than just a targeting tool. There is a glaring lack of published 
studies of targeted molecules using unstable linkers, which 
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would allow the release of the biologically active molecule 
from the targeting moiety. While this is likely mostly due 
to the inherent complications linked to their synthesis and 
stability in biological systems, only such molecules could 
provide us with a clearer understanding of the pharmacology 
of mitochondrial targeting and, furthermore, with a clearer 
path towards the development of safer and more efficacious 
treatments.
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