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Glioma is the most common type of brain cancer. Chemotherapy combination with surgery and radiotherapy is a 
standard treatment for patients. Although there are many advances in glioma therapy, the prognosis of glioma patients has 
not significantly been improved over the past decades. Hence, there is still an urgent need to develop a new therapy to treat 
glioma. Cell viability was assessed by CellTiter Blue assay; flow cytometry (FCM) was used for detecting cell apoptosis; 
ROS detection was detected by ROS Assay; H2O2 detection was performed by hydrogen peroxide detection kits; real-time 
PCR and WB were used to determine gene expression. Using the glioma cell line U251 and U87, we investigated a possible 
combination inhibitory effect includes metformin and cold atmospheric plasma (CAP). The combination treatment showed 
a synergistic inhibitory effect on cell viability, significantly inducing cell apoptosis. Furthermore, we also found H2O2 
produced by CAP has an important role in the synergistic inhibitory effect, eliminating H2O2 with catalase reversed the 
synergistic inhibitory effect. In addition, the transcript and protein levels of c-FOS were robustly increased after co-treated 
with metformin and CAP. Taken together, we propose that pre-treatment of glioma cells with metformin sensitize tumor 
cells to CAP, which may serve as a potential therapeutic strategy for glioma. 
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Glioma is the most common primary brain tumor and 
glioblastoma (GBM) is the most malignant form of glioma 
with 5-year survival rates of 5% [1]. The incidence of the 
tumor in China is 1–4/100,000 [2]. The 2016 World Health 
Organization classification of central nervous system tumors 
separates glioma into circumscribed gliomas (WHO grade I) 
and diffusely infiltrating gliomas (WHO grades II–IV) based 
on their pattern of histological feature and genetic mutant [3]. 
Chemotherapy combined with surgery and radiotherapy is a 
standard clinical treatment for patients [4]. Temozolomide 
(TMZ), is the first-line treatment for glioblastoma multiforme 
and second-line treatment for astrocytoma. TMZ is an alkyl-
ating agent that attenuates glioma through alkylating guanine 
at the O6 position along with additional contributions at the 
N3 and N7 positions of adenine [5]. However, accumulating 
evidence points toward resistance of GBM patients or no 
response to TMZ-based chemotherapy. Hence, there is still 
an urgent need to develop a new therapy to treat glioma.

Plasma is the fourth state of matter after solid, liquid, 
and gas, formed under high-temperature. The plasma 
with a room temperature called cold atmospheric plasma 
(CAP). CAP is composed of multiple reactive free groups 
including reactive oxygen species (ROS, such as hydroxyl 
radical (OH–), hydrogen peroxide (H2O2), ozone (O3), and 
superoxide (O2

–)) and reactive nitrogen species (RNS, such 
as nitric oxide (NO–) and anionic (OONO–) and protonated 
(ONOOH) forms of peroxynitrite) [6]. In the past decades, 
CAP and CAP activated medium (CAM) exhibit a broad-
spectrum anti-tumor effect in vitro and in vivo [7–12]. CAP 
or CAM has been used in combination with some agents 
to attenuate tumors. Adachi et al. confirmed that histone 
deacetylase (HDAC) inhibitors have the potential to enhance 
the susceptibility of A549 to CAM [12]. Pre-sensitization of 
breast cancer cells with HSP90 inhibitor (PU-H71) followed 
by the treatment with CAP, synergistically induce cell death 
[11]. TMZ-resistant GBM cells restore sensibility after treat-
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ment of CAP [13]. This year, FDA approved a clinical trial of 
cold plasma “scalpel” for cancer treatment. Thus, CAP has 
the potential to become an auxiliary physical therapy for 
chemotherapy.

Metformin (Met) is the most important drug for patients 
with type 2 diabetes mellitus (T2DM) [14]. metformin 
inhibits electron transport chain (ETC) and elevates AMP/
ATP ratio, resulting in AMP-activated protein kinase 
(AMPK) activation and the mechanistic target of rapamycin 
complex 1 (mTORC1) inhibition, finally change cell progress 
[15]. In recent years, metformin has been used to inhibit the 
tumor cells proliferation directly or to increase the sensitivity 
of multiple tumors to chemotherapeutic agents [16–22]. In 
this study, we found that Met had a weak toxic effect on U251, 
U87 cell lines even in a high concentration of Met (16 mM), 
while CAP had an obviously dose-dependent toxic effect. 
In addition, pre-treated glioma cells with Met significantly 
enhanced the sensitivity of the cells to CAP. The combination 
therapy remarkably induced cell death. In a further study, 
upregulation of c-fos was observed in combination therapy, 
however, the role of c-fos in synergistic effect needs to be 
further explored. Our findings suggest that CAP combined 
with Met may serve as a potential therapy for glioma patients.

Materials and methods

Cell culture and plasma treatment. U251 and U87 cell 
lines were purchased from the Cell Bank of the Chinese 
Academy of Sciences (Shanghai, China). Cells were grown in 
high glucose Dulbecco’s minimum essential media (DMEM, 
HyClone) supplemented with 10% fetal calf serum (FCS) and 
100 units/ml penicillin, 100 mg/ml streptomycin (Gibco). 
Cells were cultured at 37 °C in an incubator (Thermo Fisher 
Scientific) containing 5% CO2. In total, U251 cells and U87 
cells were seeded for 12 h in 96-well plates and then used in 
experiments. Cells were treated with the indicated concen-
trations of metformin. ddH2O was used as vehicle control. 
The atmospheric pressure argon plasma jet kINPen 11 served 
as a reactive species-generating source and was operated at a 
frequency of 1 MHz, a voltage of 3 kV with a feed gas flux of 
4 standard liters/min. The distance between the CAP source 
and the bottom of the plates was fixed at 3 cm in height. Cells 
were exposed to CAP for the indicated times.

Cell viability. For the Met or CAP treatment only, cells 
were treated with indicated concentrations or exposure 
times and further incubated for 24 h or 48 h. For the combi-

nation group, cells were incubated with Met for 12 h, and 
further incubated for 12 h after exposure to CAP. Then 
fresh complete DMEM 100 µl with 20 µl Cell Titer-Blue Cell 
Viability Assay reagents (Promega) was added. The plate was 
incubated for 4 h at 37 °C, and fluorescence was measured 
in a multimode plate reader (Thermo Fisher) at λex 560 nm 
and λem 590 nm. Cell viability was shown as the percentage of 
untreated control.

Flow cytometry. Cell apoptosis analysis was carried out 
by flow cytometry (BD). Cells were seeded in 12-well plates 
for 12 h and pre-treated with metformin (16 mM) for another 
12 h. Then cells were exposed to CAP (30 s) and incubated for 
12 h. After treatment, the apoptosis ratio was analyzed using 
an eBioscience Annexin V Apoptosis Detection Kit APC 
(Thermo Fisher) according to the manufacturer’s protocol.

ROS detection. 30 s after CAP treatment, the intracel-
lular ROS and the H2O2 concentration in the medium were 
detected according to the manufacturer’s protocol. Briefly, for 
the ROS detection, DCFH-DA (ROS Assay Kit, Beyotime) 
was diluted with a serum-free medium at 1:1000 to a final 
concentration of 10 µM. Afterward, the culture medium was 
removed and the appropriate volume of diluted DCFH-DA 
was added. Incubation was made in a 37 °C cell incubator for 
20 minutes. The cells were washed three times with a serum-
free cell culture medium to sufficiently remove DCFH-DA 
that did not enter the cells. The fluorescence was observed 
through the Olympus fluorescence microscopy. For the H2O2 
detection, hydrogen peroxide detection reagent (Beyotime) 
was thawed on ice or an ice-water bath. 50 µl of treated culture 
medium was added to the detection well, and 100 µl of the 
hydrogen peroxide detection reagent to each well. Gently 
shake or beat to mix. Left at room temperature (15–30 °C) 
for 30 minutes, and then measured A560 immediately on a 
multimode plate reader (LEICA).

qRT-PCR. After treatment (described in Flow cytometry), 
cells were washed once with ice-cold PBS and total RNA 
was extracted from cells with 0.2 ml of RNAiso Plus reagent 
(TaKaRa). The preparation of cDNA and reverse transcrip-
tional-polymerase chain reaction (RT-PCR) were performed 
according to the manufacturer’s protocol. Changes in mRNA 
expression were measured by using the SYBR Green Realtime 
PCR Master Mix gene expression assay (TOYOBO). Real-time 
PCR was performed on Applied Biosystems 7500 Real-time 
System (Applied Biosystems) using primers shown in Table 1.

Western blotting. Cells were washed twice using ice-cold 
PBS and lysed in RIPA lysis buffer (WB3100, NCM Biotech) 

Table 1. Primers for qRT-PCR.
GADD45β F: CGCCTGGCGCAGCTCCT, R: AGCGTTCCTGAAGAGAGATG
c-Fos F: TGCCTCTCCTCAATGACCCTGA, R: ATAGGTCCATGTCTGGCACGGA
β-actin F: AGTGTGACGTGGACATCCGCA, R: ATCCACATCTGCTGGAAGGTG GAC
c-jun F: AGCTGGAGCGCCTGATAATC, R:CTCCTGCTCATCTGTCACGTTCT
HSPA6 F: GATGGTCGGTTCTCTCCATTG, R: CTTCCATGAAGTGGTTCACGA
PPM1A F: AGGGGCAGGGTAATGGGTT, R: GATCACAGCCGTATGTGCATC
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supplemented with protease inhibitors and phosphatase 
inhibitors for 30 mins on ice followed by centrifugation at 
12,000 g for 15 min and supernatants were collected. The 
protein concentration was quantified by the BCA Protein 
Assay Kit (23227, Thermo Scientific). Proteins (10 µg) per 
lane were resolved by SDS-PAGE and transferred to NC 
membrane (GE Healthcare Life Sciences). Non-specific 
binding sites were blocked using 1× TBS containing 0.05% 
(v/v) Tween 20 and 5% (w/v) skimmed milk for 1 h at room 
temperature (RT). After washing, the membranes were 
incubated with the indicated primary antibody HSPA6 
(A7688, 1:1000) and c-FOS (A16641, 1:1000) from ABclonal, 
PARP (#9532, 1:1000 Cell Signaling Technology), β-actin 
(HC201, 1:1000, TransGen Biotech) overnight at 4 °C, washed 
and further incubated with an appropriate horseradish 
peroxidase-conjugated secondary antibody (1:5000, Sangon 

Biotech) at RT for 1 h. Visualization of reactive protein bands 
was performed using ChemiScope 6000 Touch (Clinx).

Statistical analysis. Prism 8.0 software was used for statis-
tical analysis. The values were presented as the mean ± SD. 
Statistical analyses were performed using Student`s t-test. 
The analysis of multiple groups was performed with one or 
two-way ANOVA with an appropriate post-hoc test.

Results

Metformin pre-treatment enhances the inhibitory 
effects of CAP to glioma cells. To explore the inhibitory 
effects of CAP or Met on tumor cells, glioma cell lines U251, 
U87 were exposed to CAP for variable time (10, 20, 40, 60 s) 
or concentrations (2, 4, 8, and 16 mM) of Met for 24 h or 48 h, 
respectively. U251/U87 cells were plated in 96 well, the cell 

Figure 1. Inhibition of cell viability by metformin, CAP only, or combination. A, B) CAP inhibited Cell viability in a dose-dependent way. C, D) Cell 
viability of two glioma cell lines upon 24 h or 48 h treatment with metformin (0, 2, 4, 8, and 16 mM) or CAP exposure (0, 10, 20, 40, and 60 s). E, F) 
The viability of cells treated with metformin combine with CAP. Pretreated glioma cells with metformin (0, 2, 4, 8, and 16 mM) for 12 h followed by 
exposure to CAP (0, 10, 20, and 30 s), Cell viability was measured at 12 hours after CAP treatment. G, H) Synergy was analyzed by CompuSyn software. 
U251/U87 cells were plated in 96 well, the cell density of U251 was 1×104, U87 was 0.5×104. The value CI<1 means synergy. The data represented as the 
mean±SD from 3 independent experiments. *p≤0.05; ***p≤0.001; CAP – cold atmospheric plasma; Met – metformin
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U251/U87 glioma cell lines were chosen for study at different 
densities. At the cell density of 1.5×104, the inhibitory effect 
of the combination was weakly decreased compared with 
CAP or Met treatment alone on both cell lines. At the U251 
cell density of 0.5×104 (Figure 2B, left panel), the inhibitory 
effect of the combination was weakly decreased compared 
with CAP alone. Conversely, at the U251 cell density of 1×104 
(Figure 1E), U87 cell density of 0.5×104 (Figure 1F), a combi-
nation showed a more obvious inhibitory effect compared to 
CAP or Met alone, respectively. These results illustrated that 
the combination effect depended on the density of the cells. 
Further analysis demonstrated a synergistic effect of Met 
and CAP in the combination treatment (Figures 1G, 1H). 
These findings demonstrate that CAP leads to synergistic or 
additive toxicity in glioma cells sensitized with Met.

Combined treatment significantly induces glioma 
cell apoptosis. Met treatment alone had no effect on cell 
morphology, while cell antennae were recovered after CAP 
treatment in U251, U87 cells (Figures 3A, 3B, third panel, 
arrows). This also confirms previous studies that CAP can 
inhibit cell migration and promote cell detachment [7, 
23]. However, combination Met and CAP can significantly 
change cell morphology, producing a death-like phenotype 
(Figures 3A, 3B, fourth panel). Apoptosis was tested by flow 

density of U251 was 1×104/well, U87 was 0.5×104/well. Using 
the Cell Titer-Blue Cell viability assay, the effect of different 
CAP exposures and Met dose on glioma cell viability was 
investigated. For the CAP treatment, an exposure time-
dependent but not the incubation time-dependent reduc-
tion in viability was observed in both cell lines. Moreover, 
CAP has a more obvious inhibitory effect on U87 compared 
to U251 (Figures 1A, 1B). For the Met treatment, Met has 
a weak toxic effect on both cell lines in a dose-dependent 
manner and irrespective of exposure time (Figures 1C, 
1D). Based on current observations and previous reports 
that Met could sensitize tumor cells to multiple chemo-
therapeutic drugs [16, 18, 19], we tried to ask whether Met 
could sensitize glioma cells to CAP. Therefore, glioma cells 
were pre-treated with Met for 12 h and then exposed to CAP 
for specific timelines (10, 20, and 30 s). Figure 2 shows the 
effect of the combination on normal cells and the relation-
ship between the cell density and the effect of the combina-
tion. Mouse primary astrocyte cells at a density of 1×104 were 
selected as the nonmalignant control group (Figure  2A). 
Although a combination of Met and CAP suppressed the 
astrocyte cells viability, the extent of inhibition was lower 
than the effect on U251 and U87 (Figures 2B, 2C) especially 
in the low concentration of Met (2 and 4 mM) and 30 s CAP. 

Figure 2. The effect of a combination on normal cells and the relationship between the cell density and the effect of a combination. A) The combination 
effect on mouse primary astrocyte cells in the cell density of 1×104, cell viability was tested by CellTiter Blue kits. The combination effect on different 
cell density of U251 (B) and U87 (C). *p<0.05; **p<0.01; ***p<0.001
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cytometry analysis. A combination significantly induced cell 
apoptosis (FITC stain, Figures 3C, 3D). Apoptosis kinetics 
showed that after CAP treatment, the apoptosis rate of the 
combination group increased with the incubation time 
(Figures 3E, 3F). It seems that Met enhanced the vulner-
ability of glioma cells to CAP, and CAP induced cell death 
through the apoptosis pathway. Pretreated U251 (at the cell 
density of 1×104) and U87 cells (at the cell density of 0.5×104) 
with Met for 12 h, the cell permeable pan caspase inhibitor 
(Z-VAD-FMK, 40 μM) was added to the culture medium 1 

hour before CAP treatment and cell viability was not reversed 
after caspase inhibitor was added. This result demonstrates 
that combination-induced cell apoptosis may not through 
the caspase pathway.

H2O2 plays an important role in the synergistic effect. 
Previous studies have shown that CAP can increase the intra-
cellular ROS and the concentration of hydrogen peroxide in 
the medium [24, 25]. To test whether it also has the same 
effect in this study, we measured intracellular ROS through 
the fluorescent probe DCFH-DA. Indeed, CAP significantly 

Figure 3. A combination significantly induced cell apoptosis. A, B) Brightfield view of glioma cells pretreated with metformin (16 mM) for 12 h fol-
lowed by exposure to CAP (30 s). A black arrow represents recovered cell antennae. C, D) Cell apoptosis was detected by flow cytometry. E, F) Apoptosis 
kinetics of the combination group. U251/U87 cells were plated in 24-well plate, the cell density of U251 was 5×104, U87 was 2.5×104. The data repre-
sented as the mean ± SD from 3 independent experiments. Scale bar = 100 µm.

Figure 4. The effect of total caspase inhibitor on the combination group. U251 (A) at the cell density of 1×104) and U87 cell (B) at the cell density of 
0.5×104 were pretreated with Met for 12 h, then the cell-permeable pan caspase inhibitor Z-VAD-FMK (40 μM) was added to the culture medium 1 h 
before CAP treatment. Cell viability was tested at 12 h after CAP treatment.
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increased the intracellular ROS level in both cell lines (Figure 
5A). Next, we measured the hydrogen peroxide concentra-
tion in the medium. The concentration of hydrogen peroxide 
was also found to be remarkably increased (Figure 5B). Based 
on changes in intracellular ROS level and hydrogen peroxide 
concentration in the medium, we proposed that hydrogen 
peroxide may have a role in the synergistic effect of Met and 
CAP. Therefore, we added catalase directly to the medium 
in the presence or absence of Met before CAP treatment. 
No wonder, after the addition of catalase the toxic effect of 
the combination was completely reversed and no change in 
cell morphology was observed (Figures 5C–5F). In addition, 
a similar synergistic killing effect was observed when the 
hydrogen peroxide was directly added after tumor cells were 
pretreated by Met (Figures 5C–5F). However, this phenom-
enon was not observed with hydrogen peroxide treatment 
alone. These findings indicate that CAP synergistically kills 
glioma cells through the production of hydrogen peroxide.

The combination of CAP and Met increases the expres-
sion of c-fos. Previous studies reported that the upregula-
tion of c-fos, c-jun, GADD45A, HSPA6, and PPM1A had 
been constantly found in Met treated colorectal cancer 
[20]. Therefore, we also examined the expression of these 
genes in this study. A dramatic upregulation of HSPA6 was 

found in combination-treated U251 and U87 cells and a 
slight upregulation of GADD45A in U87 cells. Interestingly, 
combination therapy significantly increased the expres-
sion of c-fos in U251, U87 cells (Figures 6A, 6B). Next, we 
performed western blot to identify the changes in the expres-
sion of respective genes at the protein level. Although CAP 
only and combination therapy markedly increased HSPA6 
mRNA, it had a little effect at the protein level in both cell 
lines. Consistently, the combination can increase the expres-
sion of c-fos at both mRNA and the protein level (Figure 6C). 
Moreover, after catalase was added to the combined group, 
the expression of c-fos was downregulated compared with 
the combined group. The combination of Met and hydrogen 
peroxide had a similar c-fos protein expression as the combi-
nation of Met and CAP (Figures 6D–6E). These findings 
further proved that hydrogen peroxide produced by CAP 
and Met has a synergistic killing effect.

Discussion

In the past decades, CAP has shown a broad-spectrum 
anti-tumor effect on different cancer types [6]. Although a 
low level of CAP can selectively kill tumor cells, high doses 
of CAP can also kill normal cells [26, 27]. Recent publica-

Figure 5. The role of ROS produced by CAP in synergistic inhibition effect. A) Intracellular ROS levels were measured after CAP treatment by the 
DCFH-DA probe (Left). B) Hydrogen peroxide was detected by Hydrogen Peroxide Assay Kit (Right). C, D) Glioma cells were pretreated with metfor-
min (16 mM) for 12 h, and then catalase (300 U) was added followed by exposure to CAP. Or pretreated with (16 mM) for 12 h followed by the addition 
of H2O2 (150 µM). Cell viability was measured at 12 hours after CAP or H2O2 treatment. E, F) The images of C–D under the brightfield microscope. 
U251/U87 cells were plated in 96 well-plate, the cell density of U251 was 1×104, U87 was 0.5×104. The data represented as the mean ± SD from 3 inde-
pendent experiments. **p<0.01; ***p<0.001; Scale bar = 100 µm
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tions have determined the window of selectivity of CAP 
action, this window is defined by the concentration of H2O2 
in CAP [28, 29]. There is accumulating evidence that CAP 
combined with chemical agents has a more delectable toxic 
effect compared with CAP or chemical agents alone [8, 12, 
13, 30]. In recent years, Met, the first-line drug for type 2 
diabetes, has also exhibited a broad-spectrum anti-tumor 
effect [15]. Many studies showed that Met sensitizes tumor 
cells to chemotherapy drugs [16, 18, 19]. Based on these 
studies, we wonder whether the killing-effect of combined 
CAP with Met will be better than the CAP or Met only on 
tumor cells.

CAP changes cell membrane permeability or expression 
of certain transporters to facilitate the entry of drugs into 
cells [8]. Initial experiments were performed to determine 
the sequence of combination therapy in tumor cells. Prelimi-
nary results indicated that pre-treated glioma cells with CAP 
followed Met incubation for 24 h or co-treated with CAP 
and Met did not significantly decrease cell viability (data not 
shown). Inversely, pretreatment of the Met for 12 h robustly 
enhanced the sensitivity of tumor cells to CAP. A combina-
tion could significantly induce cell apoptosis. At least, those 
preliminary experiments showed that CAP did not increase 
the sensitivity of tumor cells to chemical drugs. Instead, 
pretreatment with Met changes the physiological state of the 
glioma cells, sensitizing cells to CAP.

In vitro, CAP does not directly contact with the cells 
due to the presence of a layer of medium between the cells 
and the CAP. CAP interacts with the culture medium to 

produce H2O2, NO, NO2
–. Among diverse plasma-originated 

species, H2O2 has been proved as the main anti-cancer 
reactive species participate in CAP-induced cancer cells 
death in vitro [7, 9, 24, 30]. But CAP-associated apoptosis 
was not directly induced by H2O2, it has been shown to be 
involved in at least three steps during CAP and PAM action. 
See references for more details [28, 29, 31, 32]. Consistent 
with these studies, the concentration of H2O2 in the culture 
medium significantly increased after CAP exposure in this 
study. At the same time, the intracellular ROS levels also 
raised after treatment of CAP (Figure 3), DCFH-DA-based 
fluorescence was not always reflecting the generation of 
ROS but may be related to heme or cytochrome c content 
in cells [33–35]. The real ROS levels may be detected by 
DCFA-based ROS test kits using cell-permeable inhibitors/
scavengers of DCFH-DA competitor. Next, we examined 
the role of hydrogen peroxide in a synergistic killing-effect. 
After catalase was added, the combination effect was totally 
reversed. Meanwhile, pre-treatment with Met and then 
supply with H2O2 had a similar synergistic killing effect with 
a combination of Met and CAP. Bauer et al. suggested that 
H2O2 and nitrite, two long-lived molecular species from 
CAP, triggers tumor cells to induce their own cell death 
[28]. We speculated that the synergistic killing-effect in 
our study was due to Met providing ROS or RNS to CAP, 
enhancing the CAP-associated cell death. Although Met has 
been reported as an antioxidant regent in diabetic patients 
[36], there was research suggested Met increased intracel-
lular ROS [37]. The radical (OH or O2

–)‐induced oxidation 

Figure 6. The expression of c-FOS was upregulated in cells treated with metformin and CAP increased the expression of c-FOS. A, B) The mRNA levels 
of Jun, PPM1A, HSPA6, GADD45A, and c-FOS were examined by the SYBR Green Realtime PCR Master Mix gene expression assay. β-actin was used 
as endogenous controls. C) Western blotting was performed to detect the protein expression of HSPA6 and c-FOS. D, E) Glioma cells were pretreated 
with metformin (16 mM) for 12 h, and then catalase (300 U) was added followed by exposure to CAP. Or pretreated with metformin (16 mM) for 12 
h followed by the addition of H2O2 (150 µM). c-FOS expression was measured at 12 hours after CAP or H2O2 treatment. β-actin was used as an endog-
enous control. U251/U87 cells were plated in 24-well plate, the cell density of U251 was 5×104, U87 was 2.5×104. The data represented as the mean ± SD 
from 3 independent experiments. ***p≤0.001
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byproducts of metformin did not contain ROS and RNS 
[38], this means that the interaction between CAP and 
Met may not contribute to the synergistically inhibitory 
effect. In freshly isolated mouse hepatocytes, Met treatment 
increased ONOO– production [39]. The Met-pretreated 
U251/U87 cells may produce ONOO–, this species involved 
in CAP-associated cell death.

In the previous study, Met suppressed the prolifera-
tion of colon cancer cells and induced a time-dependent 
metabolic and transcriptional alteration [20]. We looked for 
the changes in the expression of genes reported previously. 
However, those genes (JUN, PPM1A, HSPA6, GADD45A, 
and c-FOS) were not significantly increased at the transcrip-
tion level after the treatment of Met in this study. Interest-
ingly, the c-FOS transcript and the protein levels were signif-
icantly upregulated after a combination of Met and CAP. 
c-FOS has been reported to regulate retinal neuronal cell 
death and Brazilin induced T24 cell death [40, 41]. There-
fore, the role of c-FOS in this study needs to be explored 
further. Meanwhile, experiments also need to be performed 
to determine the effect of the combination of metformin and 
CAP in vivo. Because of the limitation of penetration depth, 
CAP was difficult to apply to solid tumors in vivo. Keidar 
et al. has developed a micro-CAP device that allows CAP 
to treat glioma in the mouse brain [10]. Miniaturization of 
CAP devices and implantable CAP devices may be a devel-
opment direction for the treatment of brain tumors in the 
future.

In general, this study may provide a new method for 
gliomas therapy, but more substantial mechanisms need to 
be explored.
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