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Cullin 7 in tumor development: a novel potential anti-cancer target 
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As a core scaffold protein, Cullin 7 (Cul7) forms Skp1-Cullin-F-box (SCF) E3 ubiquitin ligase complexes with the 
regulator of cullins-1 (ROC1), S-phase kinase associated protein 1 (Skp1) and F-Box, and WD repeat domain containing 
8 (Fbxw8). Alternatively, Cul7 can form a CRL7SMU1 complex with suppressor of Mec-8 and Unc-52 protein homolog 
(SMU1), damage-specific DNA binding protein 1 (DDB1), and ring finger protein 40 (RNF40), to promote cell growth. The 
mutations of Cul7 cause the 3-M dwarf syndrome, indicating Cul7 plays an important role in growth and development in 
humans and mice. Moreover, Cul7 regulates cell transformation, tumor protein p53 activity, cell senescence, and apoptosis, 
mutations in Cul7 are also involved in the development of tumors, indicating the characteristics of an oncogene. Cul7 
is highly expressed in breast cancer, lung cancer, hepatocellular carcinoma, pancreatic cancer, ovarian cancer, and other 
malignant tumors where Cul7 promotes tumor development, cell transformation, and cell survival by regulating complex 
signaling pathways associated with protein degradation. In this review, we discuss the roles of Cul7 in malignant tumor 
development and its involvement in oncogenic signaling. We finally discuss the potential of Cul7 as a potential significant 
anti-cancer target. 
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Cullin 7 (Cul7), formerly known as KIAA0076, initially 
cloned from the cDNA library of human immature myeloid 
cell line KG-1, is a member of the Cullin protein family 
including Cul1, Cul2, Cul3, Cul4A, Cul4B, Cul5, Cul7, and 
Cul9 (parkin-like cytoplasmic protein, PARC) [1–5], which 
contains a region homologous and a more C-terminal region 
homologous to Cullins [6–9]. As a DOC domain-containing 
cullin, Cul7 is involved in assembling an SCF-ROC1-like E3 
ubiquitin ligase complex including Skp1, Cul7, Fbx29, and 
ROC1 [6]. The coding region of Cul7 is located on the short 
arm of human chromosome 6 (6p21.1) [10]. Cul7 contains 
1698 amino acids in length and is expressed in almost all 
human tissues. A high Cul7 expression level is detected in 
the human adult skeletal muscle, placenta, and fetal kidney 
[6]. Original studies have found that Cul7 is closely related to 
growth and development. The mutations of Cul7, obscurin-
like protein 1 (OBSL1), or coiled-coil domain-containing 
protein 8 (CCDC8) cause 3-M dwarf syndrome, a primor-
dial growth disorder characterized by developmental retar-
dation before and after birth [10–13]. Cul7 plays an impor-

tant role in the development of human and mouse embryos. 
The homozygote Cul7 gene knockout (Cul7–/–) in mice and 
human genetic disease models led to developmental defects 
in the placenta, slow fetus development, late pregnancy, 
and respiratory failure at birth [12, 14]. As the core scaffold 
protein of the Cullin-RING E3 ligase complex [15–18], Cul7 
plays an important role in the cell transformation, cycle 
regulation, senescence, and apoptosis with its ubiquitin 
ligase activity [19–22]. E3 ubiquitin ligases play a key role 
in the recognition of target proteins [23, 24]. Cullin-RING 
E3 ligase regulates many important biological processes 
including cell cycle progression, DNA repair, signal trans-
duction, autophagy, and apoptosis [25–30]. Abnormalities 
in ubiquitin-mediated protein degradation are closely related 
to tumorigenesis [16, 24,30]. In recent years, Cul7 has been 
found highly expressed in tumors and associated with a poor 
prognosis and malignant development. Bortezomib, a prote-
asome inhibitor, has been used to treat multiple myeloma 
and lymphoma. The clinical trials of Bortezomib in the treat-
ment of other malignancies are underway [32–38]. There-
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fore, it may be possible to treat tumors by using Bortezomib 
to inhibit the high expression of the Cul7-containing E3 
ubiquitin ligase complex in tumors. Here, we focus on the 
relationship between Cul7 and tumors and other biological 
functions.

Cul7 is abnormally expressed in tumors. In many tumor 
tissues, Cul7 has been found abnormally expressed [38] and 
distributed in the nucleus and cytoplasm of cancer cells, 
with a higher level in the nucleus than in the cytoplasm [39, 
40]. The expression level of Cul7 is increasing along with 
the tumor prognosis and stages. The latest cancer statistics 
have shown that lung cancer has the highest mortality rate 
in the world [41]. Using in silico microarray analysis, Cul7 is 
highly expressed in the nucleus of non-small cell lung cancer, 
which is positively correlated with the poor prognosis [42, 
43]. Primary hepatocellular carcinoma (HCC) is a common 
malignant tumor. A large number of epidemiological studies 
have found that metabolic syndromes, including liver fibrosis 
and cirrhosis caused by non-alcoholic fatty liver disease, are 
associated with HCC occurrence. Cul7 is reportedly associ-
ated with HCC and metabolic syndrome upon the analysis 
of 20 patients by genomic hybridization [44]. The site of 
abnormal chromosomal amplification in HCC patients is 
6p21.1 on chromosome 6, which is the site of the Cul7 gene. 
Cul7 is significantly overexpressed in HCC tissues. Immuno-
histochemical analysis has revealed that 11 of 20 HCC tissues 
are with high Cul7 expression in the nucleus, while PARC 
shows no significant changes [44]. Cul7 is highly expressed in 
the nucleus in the metastatic HCC tissues, which is positively 
correlated with the poor HCC prognosis [45]. Another 
study has shown that Cul7 is with 69.1% of the positive rate 
in 162 HCC tissues, but only 29% of the positive rate in the 

corresponding adjacent tissues. The abnormal expression of 
Cul7 is significantly correlated with lymph node metastasis, 
portal vein tumor thrombosis, and advanced clinical stages. 
Abnormal Cul7 expression promotes the proliferation, 
migration, and invasion of HepG2 cells [46]. Cul7 is also 
highly expressed in the nucleus of breast cancer tissues and 
significantly correlated with the pathological stage of breast 
cancer (p=0.013) and lymph node metastasis (p=0.022), but 
negatively correlated with patient prognosis [47]. In epithe-
lial ovarian cancer, the Cul7 expression level is significantly 
higher in the epithelial ovarian cancer than that in the control 
tissues, indicating that the Cul7 expression is closely related 
to the clinical stages, lymph node metastasis, and poor 
prognosis [48]. Hematopoietic stem cell kinase 1 (HPK1) is 
expressed in normal pancreatic ducts, but absent in >95% 
of pancreatic cancer, which is rapidly degraded through the 
Cul7-Fbxw8 ubiquitin ligase complex in the ubiquitin-prote-
asome pathway [49]. The culmination of studies highlights 
the abnormally high expression of Cul7 in tumors, which 
correlates with the pathological stage, metastasis, and 
prognosis. On the other hand, the downregulation of Cul7 by 
miR-3940-5p suppresses developments of gliomas [50]. The 
association of Cul7 and tumors is summarized in Table 1. 
Therefore, Cul7 is an important clinical tumor marker, which 
is with the significance to explore the regulatory mechanisms 
of Cul7 in tumors.

Materials and methods

Cul7 interacts with tumor-related proteins. The molec-
ular mechanisms of Cul7-associated tumorigenesis have been 
reported. As an oncogene [42], Cul7 is highly expressed in 

Table1. Association of Cul7 with malignant tumors.
Tumor Method Cul7 expression Regulatory mechanism References
Breast cancer WB, IHC No or weak Cul7 expression in 26 normal tissues 

and Cul7 expression in the nucleus of 39 breast 
cancer tissues.

Cul7 promotes the proliferation and invasion 
of breast cancer cells by down-regulating the 
expression of p53.

[89]

Lung cancer IHC No or weak expression of Cul7 in the cytoplasm 
of normal lung mucosa and epithelial cells. 
Cul7 is expressed in lung cancer tissues, with a 
stronger expression in the nucleus than that in 
the cytoplasm.

Cul7 promotes the proliferation and invasion 
of lung cancer cells by down-regulating p53.

[42, 43]

HCC qRT-PCR Cul7 is expressed in 91% of 34 HCC tissues, 
which is significantly higher than that in adjacent 
normal tissues.

Cul7 up-regulates N-cadherin and Vimen-
tin and down-regulates E-cadherin and 
α-cadherin promoting EMT transformation 
of cells.

[45]

HCC/MS IHC Cul7 overexpression in 11 of 20 HCC patients 
with metabolic syndrome.

Cul7 promotes cell proliferation and reduces 
apoptosis by targeting the degradation of 
Cyclin D1.

[90]

Epithelial ovarian 
cancer

qRT-PCR The positive expression rate of Cul7 in ovarian 
cancer tissues is 2.1-8.4 times higher than that in 
normal ovarian epithelial tissues.

Downregulation of Cul7 inhibits the migra-
tion and invasion of cancer cells. [48]

Glioma TCGA, CGGA,
WB, IHC

Cul7 is highly expressed in gliomas with high 
grade and poor prognosis.

Cul7 is associated and ubiquitin-mediated 
MST1 degradation, which promotes the NF-
κB signaling pathway for glioma development.

[50]

Abbreviations: WB-Western blots; IHC-Immunohistochemistry; HCC-Hepatocellular carcinoma; HCC with metabolic syndrome; TCGA-the Cancer 
Genome Atlas database; CGGA-the Chinese Glioma Genome Atlas database; MST1-mammalian sterile 20 like kinase 1; NF-κB-nuclear factor- κB
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different types of tumors [51]. Cul7 promotes tumorigenesis 
through complex signaling pathways [1, 52]. Cul7 contains 
unique domains including CH, CPH, DOC, and BH3, and 
interacts with the complex of ROC1 and SKp1-Fbxw8 through 
the CH domain to form the SCF class of E3 ubiquitin ligase 
complex [5, 14, 19, 37, 53]. The Cul7 assembled SCF-ROC1-
like E3 ubiquitin ligase complex permits the degradation of 
protein substrates (Figure 1A), including cyclin D1 that is 
a cellular proto-oncogene [22, 44, 54, 55], insulin receptor 
substrate 1 (IRS-1) that supports tumor growth [22, 56, 57], 
HPK1 that is a critical negative regulator in the activation of 
T lymphocytes and dendritic cells [49, 58], Golgi peripheral 

membrane protein p65 (GRASP65) that is associated with 
tumor growth and cell apoptosis [59, 60], rat ether à go-go 
1 (rEga1) that is associated with tumorigenesis [9, 10, 61], 
and Tre-2/Bub2/Cdc16 (TBC1) domain family member 3 
(TBC1D3) that is an oncogene [62–64] (Table 2). Cul7, as a 
core scaffold protein, assembles a novel HECT-type E3 ligase 
complex with suppressor of mec-8 and unc-52 homolog 
(SMU1), damage-specific DNA Binding Protein 1 (DDB1), 
and ring finger protein 40 (RNF40), which regulates the 
monoubiquitination of H2B (Figure 1B), thereby affecting cell 
mitosis and genome stability [65]. An array assay has identi-
fied Cul7 binding partners, including p53 [66], SV40 large 
T antigen [67], Cul9 (PARC) [68], obscurin-like protein  1 
(OBSL1), coiled-coil domain containing 8 (CCDC8) [69], 
DDB 1, and RNF40 [65]. Mutations and/or abnormal expres-
sion have shown that these proteins are often associated with 
tumor development.

Cul7 inhibits apoptosis and promotes cell growth. As 
an anti-apoptotic oncogene [42], Cul7 promotes cell prolif-
eration by antagonizing p53 functions [66, 69]. p53, as a 
tumor suppressor protein, is regulated its stability, transla-
tion, localization, and transcriptional activity through the 
extensive post-translational modifications (PTMs) [70–72]. 
Nuclear magnetic resonance (NMR) spectroscopy has shown 
that p53 directly binds to the conserved CPH domain of 
Cul7, which inhibits p53 transcriptional activity [53, 73, 74]. 
Mutations in the CPH domain of Cul7 inhibit the binding 
of Cul7 to p53, leading to a recovery of p53 activity. To date, 
there has been no direct evidence that Cul7 E3 ubiquitin 
ligase could degrade p53 through polyubiquitination [66, 
75]. In the cytoplasm, Cul7 binds directly to p53 to inhibit 
p53 transcriptional activity, although another E3 ligase, 
mouse double minute 2 (MDM2) promotes cell survival, 
proliferation, invasion, and therapeutic resistance by binding 
to p53 to promotes its degradation through ubiquitina-
tion [66, 76]. However, the Cul7-p53 interaction is cell line 
dependent [21]. The accumulation of p53 does not occur in 
either Cul7-suppressed or Cul7-knockout in mouse embry-
onic fibroblasts (MEFs) [42], but p53 is upregulated in SHEP 
neuroblastoma cells [21]. In breast cancer and lung cancer 
cells, the silencing of Cul7 by RNAi increases the p53 expres-
sion [77]. The experimental evidence is lacking whether the 
degradation of Cul7 is induced through the direct polyubiq-
uitination of p53. Therefore, the specific reasons for Cul7 
degradation remain unclear. The overexpression of Cul7 
inhibits C-Myc and N-Myc-induced apoptosis of neuroblas-
toma SHEP cells in a p53-dependent manner [42]. During 
etoposide-induced DNA damage, the increase in the Cul7 
mRNA expression inhibits apoptosis in a p53-dependent 
manner [42, 66, 78, 79]. However, the overexpression of Cul7 
promotes apoptosis of NIH3T3 cells through the effect of 
Cul7 on the integrity of the BH3 domain. The transfection 
of mutant Cul7 (1152 stop) in human osteosarcoma U2OS 
cells reduces the apoptosis induced by MG-132 and etopo-
sides [79].

Figure 1. Cullin7 acts as a scaffold protein. A) Cul7 interacts with ROC1 
and SKp1-Fbxw8 complex to form the SCF E3 ubiquitin ligase complexes, 
permitting the degradation of protein substrates; B) Cul7 forms a HECT-
type E3 ligase complex with SMU1-DDB1 complex and RNF40 regulat-
ing the monoubiquitination of H2B.

Table 2. Substrates of Cul7 assembled SCF-ROC1-like E3 ubiquitin ligase 
complex.
Subtract Function Reference
Cyclin D1 A cellular proto-oncogene, as allosteric 

regulators of cyclin-dependent kinase 4 
(CDK4) and CDK6 to regulate cell cycle 
transition from G1 to S phase

[22, 44, 54, 55]

IRS-1 A signaling adaptor to promotes tumor 
growth

[22, 56, 57]

HPK1 A critical negative regulator in the activa-
tion of T lymphocytes and dendritic cells

[49, 58]

GRASP65 A marker of malignant cancer cells for 
the ability of cancer cells to invade the 
extracellular matrix

[59, 60]

rEga1 Eag1 (Kv10.1) potassium (K+) channels 
associated with congenital neurodevelop-
mental anomalies and tumorigenesis

[9, 10, 61]

TBC1D3 An oncogene to stimulate the intrinsic 
GTPase activity of RAB5A, an essential 
actor in early endosome trafficking

[62-64]

Abbreviations: IRS-1-insulin receptor substrate 1; HPK1-hematopoietic 
progenitor kinase 1; GRASP65-Golgi peripheral membrane protein p65; 
rEga1-rat ether à go-go 1; TBC1D3-Tre-2/Bub2/Cdc16 (TBC1) domain 
family member 3
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mitosis, and genomic integrity, in addition to tumorigenesis 
and development. However, the specific mechanism(s) of 
these effects require further exploration.

Cul7 promotes tumor metastasis. Metastasis is an 
important characteristic of malignant tumors, which reduces 
the anticancer therapeutic efficiency and promotes cancer-
related death. The expression of Cul7 is closely related to 
tumor metastasis. Scratch and invasion assays have shown 
that the Cul7 silencing inhibits the invasion and migration of 
choriocarcinoma, ovarian cancer, liver cancer, breast cancer, 
glioma, and other cancer cell lines, while the Cul7 overex-
pression promotes cancer cell invasion and migration [50]. 
Cul7 induces epithelial-mesenchymal transition (EMT), an 
important mechanism of tumor metastasis and progression, 
in choriocarcinoma JEG3 cells [83, 84]. The overexpression 
of Cul7 increases the expression of zinc finger E-box binding 
homeobox 1 (ZEB1) and Slug, inhibits the expression of 
E-cadherin, and enhances the migration and invasion of 
cancer cells. Cul7 also promotes the invasion and migration 
of HCC cells through inducing EMT [45]. The expression of 
Cul7 in HCC cell lines, HCCLM3, SUN886, and SNU423, 
is stronger than that in non-invasive cell lines, HepG2 and 
Huh7. The Cul7 silencing in SUN886 cells increases the 
expression of E-cadherin and catenin but decreases the 
expression of N-cadherin and Vimentin. The overexpres-
sion of Cul7 in HepG2 cells leads to the reverse phenotype. 
Cul7 promotes the invasion of breast cancer cells through the 
inhibition of p53. The Cul7 silencing inhibits the invasion 
and migration of BT474 breast cancer cells, while the down-
regulation of p53 simultaneously reverses these effects [47]. 
Therefore, Cul7 promotes tumor invasion and metastasis, but 
the specific pathways that regulate its ability to ubiquitinate 
and degrade new substrates require further investigation.

Discussion

Cul7 is involved in cell senescence. Insulin receptor 
substrate-1 (IRS-1) mediates the signal transduction through 
its ability to bind insulin receptors and insulin-like growth 
factor-1 (IGF-1) receptors, which regulate the glucose metab-
olism for growth and development. The degradation of IRS-1 
is dependent on Cul7 ubiquitin ligase [53, 85]. Following the 
receptor activation, IRS-1 is phosphorylated on an array of 
tyrosine residues and recruited by Src homology 2 (SH2) 
adaptor proteins to activate downstream Akt and RAS/MEK/
ERK pathways through PI3K and Grb2/SOS, respectively. 
The inactivation or deletion of Fbxw8 and Cul7 promotes the 
accumulation of IRS-1 [85, 86]. Cul7 E3 ligase mediates IRS-1 
degradation in an mTOR-dependent manner, suggesting that 
Cul7 is an important regulator of the negative feedback loop 
of mTOR/IRS-1 and stably regulates the activity of PI3K and 
other continuously activated mTOR/S6K targets [21, 87]. The 
accumulation of IRS-1 and the persistent activation of Akt, 
MEK/ERK, and downstream IRS-1 pathways are observed 
in Cul7–/– MEFs [22]. Although these mitogenic signaling 

Results

The overexpression of Cul7 in the breast cancer cell 
line HCC1937 enhances cell proliferation, migration, and 
invasion, but decreases the expression of p53 and downstream 
p21 and p27 [46]. In contrast, Cul7 knockdown in BT474 cells 
inhibits proliferation, migration, and invasion [47]. Cul7 also 
promotes the proliferation, migration, and invasion of lung 
cancer cells [43]. When Cul7 is silenced, the expression of 
p53 and downstream p27 and p21 is increased [43]. Cyclin 
D1 regulates G1 to S phase of the cell cycle by PTMs. Fbxw8 
mediates the ubiquitination of Cyclin D1 through the MAPK 
kinase-mediated phosphorylation of Thr286 [80]. The 
conversion of Thr286 to Ala286 or Fbxw8/ Cul1/Cul7 silence 
stabilizes Cyclin D1 and inhibits the cell cycle progression 
[80–82]. Cul7 degrades Cyclin D1 in HCC cell lines, HepG2 
and SKHep-1, which may contribute to the effect of Cul7 on 
hepatocarcinogenesis and hepatic metabolic syndrome [44]. 
In Hela and MDA-MB-231 cells, Cul7 inhibits apoptosis 
induced by tumor necrosis factor-related apoptosis-inducing 
ligand (TRAIL) through the ubiquitination of Caspase 8 [51]. 
Whether Cul7 is an anti- or pro-apoptotic factor requires 
further clarification in a range of cellular systems. The 
consensus to-date is that Cul7 inhibits apoptosis, promotes 
proliferation, and regulates tumor development.

Cul7 contributes to genome stability. DNA damage 
repair is key to the maintenance of genome stability. Cul7, 
OBSL1, CCDC8 and Fbxw8 constitute the 3M complex 
and mutations in these genes are the main cause of 3M and 
other growth retardation syndromes [69]. OBSL1 regulates 
the transcriptional expression of Cul7, while CCDC8 affects 
the centrosome localization of Cul7. Cul7 and/or OBSL1 
silencing results in abnormal microtubule dynamics. In lung 
cancer NCI-H1155 cells treated with low dose paclitaxel/taxol 
(10 nM), an anti-tumor agent that stabilizes microtubules, 
both Cul7 and OBSL1 depletion greatly delayed chromosome 
alignment and increased the transit time between prometa-
phase and metaphase. Therefore, the deletion of Cul7 leads 
to disorders in mitosis and cytokinesis through microtubule 
defects [69]. Cul9 is a tumor suppressor that is downstream 
of the 3M complex and highly homologous to Cul7 regarding 
Cul9 structure and ability to bind to p53. When Cul9 is 
silenced, the microtubule dynamics and mitotic disor-
ders caused by the knockdown of Cul7 and OBSL1 can be 
reversed. Survivin is the strongest apoptotic suppressor gene 
discovered to date. Cul9 ubiquitinates and degrades Survivin, 
which is reversed by Cul7 [68]. Cul7 silencing reduces 
Survivin expression. The exogenous overexpression of 
Survivin reverses the impairment in microtubule dynamics 
and mitotic dysfunction caused inhibition. In addition, the 
deletion of Cul7 in the newly discovered CRL7SMU1 complex 
leads to chromosomal lagging, the formation of anaphase/
nuclear bridges and multipolar spindles, affecting mitotic 
processes and genome stability [65]. Based on these results, 
Cul7 plays an important role in microtubule maintenance, 
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pathways are activated, Cul7–/–mice fibroblasts grow slowly 
and the number of cells arrested in the G1 phase increases. 
In addition, Cul7–/– fibroblasts exhibit the characteristics of 
the cell senescence, including the upregulation of the tumor 
suppressor p16, the low phosphorylation level of pRb, and the 
increased level of β-galactosidase [44]. SV40 large T-antigen 
binds to a 1391–1698 amino acid stretch at the C-terminal of 
Cul7, which inhibits Cul7 ubiquitination-mediated degrada-
tion of IRS-1, enhancing IRS-1 signaling [88].

In summary, Cul7 is highly expressed in multiple malig-
nant tumors, including lung cancer, liver cancer, breast 
cancer, ovarian cancer, and the expression of Cul7 closely 
correlates with the clinical staging and prognosis [43, 45, 47, 
48]. Cul7 inhibits the activity of apoptotic proteins, promotes 
the invasion and metastasis of cancer cells, maintains the 
microtubule and genome stability, and degrades IRS-1 
through mTOR to participate in the cell senescence. However, 
the mechanisms that regulate Cul7 during tumorigenesis are 
still not fully understood. Cul7 is expressed in the cytoplasm 
of many non-cancerous tissues, while the immunohisto-
chemistry suggests that Cul7 is overexpressed in the nucleus 
of tumor cells. The biological role of Cul7 in the nucleus 
remains unclear. Whether Cul7 could degrade p53 through 
ubiquitination is also controversial. Cul7 silencing increases 
the sensitivity of cancer cells to paclitaxel drugs, however, 
the specific mechanisms of this effect require further inves-
tigation. Revealing the in-depth molecular mechanisms of 
Cul7 in cancer therapy may open new avenues for tumor 
diagnosis, prognosis, and molecular targeted therapy.
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