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Gastric cancer (GC) is a prevalent gastrointestinal malignancy, with metabolic reprogramming, 26 

particularly glycolysis, playing a critical role in cancer cell stemness. However, the interaction 27 

between glycolysis and GC prognosis, along with its underlying mechanisms, remains poorly 28 

understood. This study aimed to systematically analyze the prognostic significance of glycolysis in 29 

GC and explore its functional impact. A glycolysis-related gene score was constructed using 30 

bioinformatics to assess glycolysis levels based on differentially expressed genes between GC and 31 

normal tissues. A nomogram model was developed to predict clinical prognosis, and the functional 32 

phenotypes of GC cell lines cultured under high and low glucose conditions were evaluated using 33 

metabolite detection and extracellular acidification rate (ECAR) measurements. Enrichment 34 

analyses identified key signaling pathways, which were further validated by western blot. Results 35 

showed that elevated glycolysis was associated with larger tumor size and poorer prognosis in GC 36 

patients. The nomogram demonstrated strong predictive accuracy. High glucose culture promoted 37 

glucose consumption, lactate production, ATP generation, and ECAR, enhancing 38 

epithelial-mesenchymal transition and malignant progression via the PI3K/AKT pathway. In 39 

conclusion, high glycolysis is linked to poor prognosis in GC and drives metastasis and stemness 40 

through the PI3K/AKT signaling pathway, highlighting its potential as a prognostic marker and 41 

therapeutic target. 42 
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Gastric cancer (GC) is the fifth most common malignancy and the fourth leading cause of 47 

cancer-related mortality [1, 2]. Despite the decreased global incidence of GC [3], it remains highest 48 

in East Asian countries, including China [4]. The efficacy of traditional clinical treatments for GC, 49 

including surgery and chemoradiotherapy, is limited, resulting in poor patient prognoses and 50 

stagnant five-year survival rates. The primary reasons for the limited efficacy include the complex 51 

GC driver genes, high intra-tumor and inter-tumor heterogeneity, and the presence of cancer stem 52 

cells (CSCs). CSCs, in particular, contribute to metastasis, recurrence, and drug resistance [5]. 53 

Metabolism plays a crucial role in GC and impacts patient prognosis [6]. Epithelial-mesenchymal 54 

transition (EMT) represents a reversible cellular program that may serve as a pivotal early stage of 55 

tumor metastasis [7]. Furthermore, hyperglycemia promotes cell invasion and metastasis in various 56 

cancers [8]. However, the mechanisms underlying this phenomenon remain unclear. 57 

Metabolic reprogramming, an emerging hallmark of cancer [9], has gained substantial attention in 58 

the last few years. The relationship between metabolic reprogramming and cancer has been 59 

extensively validated, and glycolysis is a crucial pathway for energy metabolism reprogramming in 60 

tumor cells. Tumor cells exhibit significantly elevated glycolysis levels, preferentially utilizing this 61 

pathway for energy production under both hypoxic and aerobic environments [10]. Metabolic 62 

reprogramming has been observed in vivo in various tumor types and is closely associated with the 63 

maintenance of CSCs, cancer progression, metastasis, and drug resistance [11]. Metabolism, 64 

particularly glycolysis, is intricately linked with EMT and stemness in tumor cells [12, 13]. 65 

Alterations in glycolysis levels in tumor cells are associated with stemness-associated 66 

characteristics exhibited by the entire tumor cell population [14]. Under normal circumstances, 67 

cells are not affected by any changes in intracellular glucose metabolism due to changes in blood 68 

sugar in the body. However, tumor cells are highly sensitive to fluctuations in glucose concentration 69 

in the external environment, thereby regulating intracellular glucose metabolism and changing their 70 

metabolic mode to ensure survival and further metastasis and proliferation. However, the regulation 71 

of glycolysis in tumor cells and its role in controlling EMT and metastasis remain unclear. 72 

Consequently, we investigated the effects of elevated glucose levels on EMT and stemness in 73 

tumors. In this study, the effects of high glucose levels on GC cell metastasis and stemness were 74 

evaluated using both clinical data and biological experiments. Furthermore, the objective of this 75 
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study was to gain preliminary insight into the molecular mechanisms through which high glucose 76 

exerts these effects. Our results have significant clinical implications for identifying specific targets 77 

and inhibitors related to tumor metabolism and stemness [11]. Thus, our findings provide valuable 78 

insights into GC that may contribute to developing new therapeutic strategies. 79 

 80 

Materials and methods 81 

Cell lines and culture. The human GC cell lines MGC803 and HGC27 were obtained from the 82 

Chinese Academy of Sciences (China). The cells were cultured in DMEM complete media 83 

containing 10% fetal bovine serum, 1% L-glutamine, penicillin, and streptomycin. All cells were 84 

cultured in a 37 °C incubator with 5% CO2. 85 

Data processing and establishment of the GRG score model. Gene expression data were 86 

extracted from The Cancer Genome Atlas (TCGA) database. The "limma" package was used to 87 

select differentially expressed genes (DEGs) between the tumor and normal tissues with the 88 

following criteria: FDR-adjusted p-values < 0.05 and |fold change| > 1.5. The Molecular Signatures 89 

Database (MSigDB) v4.0 was searched for glycolysis-related gene sets 90 

(HALLMARK_GLYCOLYSIS). Gene set enrichment analysis (GSEA) was performed on DEGs to 91 

identify pathways and networks potentially involved in GC progression. From the 4266 DEGs, 54 92 

GRGs were identified using a Venn diagram. Next, Cox regression analysis and Least Absolute 93 

Shrinkage and Selection Operator (LASSO) regression were performed to identify glycolytic target 94 

genes associated with overall survival (OS) to establish GRG score model. The GRG scores for 95 

patients with stomach adenocarcinoma (STAD) were calculated based on the coefficients (Coefi) 96 

and expression levels (Expri) of the prospective prognostic GRGs using the following formula: 97 

. 98 

Construction and evaluation of the GRG prognostic model. Data from the TCGA database were 99 

used as the training set. The median GRG score (median=0.033) was used as the cutoff to divide 100 

355 TCGA-STAD patients into high and low glycolysis groups. Kaplan-Meier curves were plotted 101 

to compare the OS between the high and low GRG score groups. Time-dependent receiver 102 

operating characteristic (ROC) curves were used to evaluate the predictive ability of the GRG score 103 

model. To validate the prognostic model, the same process was carried out on a testing dataset from 104 

the Gene Expression Omnibus (GEO) (GSE62254, N=300). 105 
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Development of a nomogram based on GRG scores and clinical factors in TCGA-STAD. The 106 

"compare Groups" R package was used to compare the predictive efficacy of the GRG score with 107 

clinical characteristics. Cox regression analysis was applied to evaluate the independent prognostic 108 

value of the GRG scores and other clinical features. A nomogram was constructed using the R 109 

package "rms" and "regplot" to predict prognosis, based on GRG scores and clinical features. 110 

Calibration plots of the nomograms were created to assess the predictive accuracy of the nomogram 111 

using the "caret" package. ROC curves were used to validate the predictive ability of the 112 

nomogram. 113 

GRG score model differential analysis and enrichment analysis. The TCGA-STAD dataset was 114 

divided into 2 groups based on the median glycolysis score. DEGs were selected using the 115 

following criteria: FDR-adjusted p-values < 0.05 and |fold change| > 1.5 between the high and low 116 

GRG score group. The differential biological effects and signaling pathways between the high and 117 

low glycolysis groups in the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 118 

(KEGG) databases were evaluated using the "cluster Profiler" package in R. GSEA was employed 119 

to assess whether expression of specific gene sets from the MSigDB collection 120 

(h.all.v2023.1.Hs.symbols.gmt) were significantly different between the high and low glycolysis 121 

groups. 122 

Calculation of EMT and stemness scores. The pan-cancer 78-gene EMT signature was 123 

downloaded from the EMTome online database (https://www.emtome.org/) [15]. The expression 124 

levels of the 78 genes were calculated as the sum across all samples. The top 10 mesenchymal 125 

genes (MGene_top10) and the top 10 epithelial genes (EGene_top10) were defined. The EMT score 126 

for each sample (panCancer_EMTscore) was calculated as the difference in expression values 127 

between the MGene_top10 and EGene_top10. A higher EMT score indicates a more mesenchymal 128 

phenotype and a less epithelial phenotype. The stemness score (ssGSVA score) was constructed 129 

with the "GSVA" R package using 109 cancer stem cell-related genes compiled from previous 130 

research [16]. 131 

Glucose consumption and lactate production measurement. Cells were seeded into 6-well plates. 132 

After 24 h, 2 ml of fresh medium was used instead. Following a fixed incubation period, the cell 133 

culture supernatant was collected. Glucose consumption was assessed using a colorimetric method 134 

according to the instructions of the Glucose and Sucrose Assay Kit (Sigma-Aldrich, #MAK013, 135 
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USA). Lactate production was measured using the Lactate Assay Kit II (Abcam, #ab65331, UK). 136 

Glucose consumption and lactate production were normalized to the number of cells (μmol/106 137 

cells). 138 

Adenosine 5'-triphosphate (ATP) production measurement. Cells were seeded into 6-well plates. 139 

After 24 h, 2 ml of fresh medium was used instead. Following a fixed incubation period, the cells 140 

were collected, and ATP production was measured using the ATP Assay Kit (Beyotime, #S0027, 141 

China). ATP production was normalized to the control group (nmol/mg protein). 142 

Extracellular acidification rate (ECAR) measurement. Cells were seeded in XF96 plates (15,000 143 

cells/well) and incubated overnight. After washing, the cells were incubated in a 37 °C CO2-free 144 

incubator for 60 min. Glucose (10 mM), oligomycin (1 μM), and 2-deoxyglucose (2-DG, 50 mM) 145 

were added, and ECAR was measured at the specified time points. The ECAR was assessed using 146 

the Seahorse XFe96 analyzer (Agilent Technologies Inc., USA) to evaluate glycolytic flux. 147 

Oxygen consumption rate (OCR) measurement. Cells were seeded in XF96 plates (15,000 148 

cells/well) and incubated overnight. After washing, the cells were incubated in a 37 °C CO2-free 149 

incubator for 60 min. Oligomycin (1 μM), Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone 150 

(FCCP, 1 μM), and rotenone/antimycin A (0.5 μM) were sequentially added, and OCR was 151 

measured at the specified time points. OCR was determined using the Seahorse XFe96 analyzer 152 

(Agilent Technologies Inc., USA) to assess mitochondrial respiration. 153 

Cell invasion and migration assay. To assess cell migration and invasion, Transwell™ chambers 154 

(24-well inserts; pore size, 8 μm; Corning, USA) were either left uncoated or coated with diluted 155 

Matrigel (BD Biosciences, USA). Serum-starved cells (2 × 104) were seeded in the upper chamber 156 

with serum-free medium, while the lower chamber contained complete medium with varying 157 

glucose concentrations. After 24 h of incubation at 37 °C, the cells that had migrated through the 158 

membrane were fixed, stained, photographed, and counted. Quantitative analysis was then 159 

performed to assess cell migration and invasion. 160 

Cell proliferation analysis. Cells cultured in high- and low-glucose environments were seeded in 161 

96-well plates (approximately 5,000 cells/well) and cultured in media with different glucose 162 

concentrations. Using the IncuCyte S3 platform (Sartorius, Göttingen, Germany), phase contrast 163 

images were collected from two regions within each well at 3 h intervals using a 10× objective. The 164 

IncuCyte S3 image analysis software was set to detect cell edges and determine their confluence 165 
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percentage. Proliferation curves were plotted based on the confluence percentage over time to 166 

evaluate cell proliferation capacity. 167 

Sphere formation assay. A solution of 0.8% methylcellulose was prepared [14]. and 2 ml of the 168 

solution was added to each well of a low-adhesion 24-well plate. Cells were cultured in high- and 169 

low-glucose environments during their logarithmic growth phase and harvested. The cell density 170 

was adjusted to 5 × 104 cells/ml and 10 μl of the cell suspension was added to the methylcellulose 171 

in each well. Cells were incubated at 37 °C with 5% CO2 for 7-14 days. Photograph and count the 172 

number and size of spheres under an inverted fluorescence microscope. 173 

Colony formation assay. Cells are cultured in high- and low-glucose environments during their 174 

logarithmic growth phase. The cell density was adjusted to 5 × 103 cells/ml and 20 μl of the cell 175 

suspension was added to each well of a 6-well plate and gently shaken to disperse the cells. Every 3 176 

days, 1 ml of the corresponding fresh medium was added. Cells were incubated at 37 °C until 177 

visible colonies formed. The colonies were fixed with 2 ml of 4% formaldehyde (Solarbio, China) 178 

for 30 min, stained with 2 ml of 0.1% crystal violet (Solarbio, China) for 30 min, rinsed with PBS, 179 

air dried, and photographed. Count the number of colonies formed in each group. 180 

Protein extraction and western blot. Cells cultured in high- and low-glucose environments were 181 

lysed to extract total protein. The proteins were separated using SDS-PAGE and transferred to 182 

membranes, followed by the addition of ECL detection reagent for visualization. Western blot band 183 

grayscale values were quantified using ImageJ software. Target protein band densities were 184 

normalized to the corresponding β-actin internal control. 185 

The following primary antibodies were used: CD44 (#ab157107), SOX2 (#ab97959), and Oct4 186 

(#ab18976), were from Abcam (USA), and vimentin (#5741S), β-actin (#4970S), E-cadherin 187 

(#3195S), N-cadherin (#13116S), Snail (#3879S), Nanog (#3580S), p-PI3K (#4228S), PI3K 188 

(#4249S), p-AKT (#4060S) and AKT (#2920S) were from Cell Signaling Technology (USA). 189 

Secondary antibodies were HRP-labeled goat anti-rabbit and anti-mouse IgG (Jackson, USA). 190 

Statistical analysis. 191 

192 

±s). Normality and homogeneity of variance 193 

analyses were conducted on the data. P < 0.05 was considered statistically significant. 194 

 195 
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Results 196 

Impact of the high glycolysis model on prognosis in patients with GC. Using TCGA data, we 197 

identified DEGs between GC and normal tissues (Supplementary Figure S1A). Based on the 198 

glycolysis gene set from the hallmark database, glycolysis genes were significantly enriched in GC 199 

patients (Supplementary Figure S1B). After integrating DEGs from TCGA, we selected 54 200 

glycolysis-related DEGs in tumor tissues versus normal tissues for further study (Supplementary 201 

Figure S1C). After filtering through LASSO and multivariable Cox regression analysis 202 

(Supplementary Figures S1D, S1E), 4 genes (STC1, VCAN, SOX9, and AK4) significantly 203 

associated with OS were identified (p < 0.05). GRG scores were calculated using the following 204 

formula: GRG score=(0.1908 × STC1)+(0.1034 × VCAN)+(−0.1660 × SOX9)+(0.1216 × AK4). 205 

STAD patients were divided into high and low glycolysis groups based on the GRG scores. The 206 

heatmap displays the expression profiles of the four genes. Compared to the low glycolysis group, 207 

the expression levels of AK4, STC1, and VCAN were higher in the high glycolysis group, whereas 208 

SOX9 expression was lower in the high glycolysis group (Figure 1A). 209 

The relationship between the survival status and time of GC patients was ranked by GRG scores 210 

(Figure 1B). Based on the Kaplan-Meier survival analysis, the predictive model exhibited strong 211 

prognostic capability, with the low glycolysis group showing a higher survival rate and patients in 212 

the high glycolysis group showing shorter survival times (p < 0.005; Figure 1C). The predictive 213 

ability of the prognostic model was validated using the 1-year, 3-year, and 5-year ROC curves; the 214 

AUC values of the ROC curves were all above 0.6, indicating that the GRG score model accurately 215 

predicted prognosis in patients with GC (Figure 1D). 216 

The ACGR cohort (GSE62254, N=300) from the GEO database was selected as the testing gene set 217 

to verify the GRG scoring model using the same methodology. The distribution of the four 218 

GRG-related genes in the heatmap plot (Figure 1E) and the survival status stratified by median 219 

GRG scores (median=0.411; Figure 1F) were similar to the previous findings. The Kaplan-Meier 220 

survival curves demonstrated that the survival rate of the low glycolysis group was higher than the 221 

survival rate of the high glycolysis group (Figure 1G), consistent with the results from the 222 

TCGA-STAD. Additionally, the GRG score-based model exhibited good sensitivity and specificity, 223 

with AUC values above 0.6 in ROC curves (Figure 1H). Further analysis of the relationship 224 

between the GRG score and clinical pathological characteristics revealed that high glycolysis levels 225 
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were associated with larger tumor size in patients with GC (Supplementary Table S1, 226 

Supplementary Figure S2A). Meanwhile, the TCGA project has classified gastric cancer into four 227 

molecular subtypes including genome stable (GS), MSI, EBV, and chromosomal instability (CIN). 228 

We found that the distribution of GRGscore varies significantly among different molecular subtypes 229 

and higher GRG score cases were concentrated on the subtypes of GS (Supplementary Figures S2B, 230 

S2C). 231 

Nomogram for predicting prognosis in GC patients combining glycolysis and clinical 232 

characteristics. A glycolysis-clinical nomogram was developed to predict individual survival rates 233 

based on glycolysis and clinical factors. First, Cox regression analyses were conducted to evaluate 234 

the GRG score and other clinical features. The univariate Cox results indicated that age, stage, 235 

Tumor node metastasis (TNM) classification, and the GRG score, were associated with OS (Figure 236 

2A). More total points were associated with shorter 1-year, 3-year, and 5-year survival times (Figure 237 

2B). Multivariate regression revealed only 3 independent prognostic factors (Supplementary Table 238 

S1). Calibration curves comparing the predicted survival times with observed 1-year, 3-year, and 239 

5-year survival times (Figure 2C) indicated that the nomogram prediction model accurately 240 

predicted the survival time of patients with GC within a 5-year period. 241 

The GRG score model exhibited better predictive accuracy compared to clinical features such as 242 

tumor grade and TNM classification. The nomogram model combining the GRG score with 243 

significant clinical features from the multivariate Cox analysis exhibited the highest AUC (> 0.7) 244 

(Figure 2D). Thus, combining glycolysis and clinical factors reliably predicted patient prognosis, 245 

highlighting the clinical significance of glycolysis. 246 

High and low glucose culture environments induce different glycolytic phenotypes in GC cells. 247 

To verify the impact of glycolysis on the malignant GC phenotype, MGC803 and HGC27 GC cell 248 

lines were cultured in media with 25 mM, 15 mM, and 5.5 mM glucose to establish cell lines with 249 

varying glycolytic phenotypes. Treatment with different glucose concentrations significantly altered 250 

the glycolytic levels in GC cells. A high-glucose environment significantly increased glucose 251 

consumption and the production of major glycolytic products, including lactate and ATP (Figures 252 

3A-3C). High-glucose culture also significantly elevated the ECAR levels in GC cells (Figure 3D). 253 

Conversely, a low-glucose environment significantly reduced glucose consumption, lactate 254 

production, ATP generation, and ECAR in GC cells. We further performed mitochondrial oxygen 255 
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consumption rate (OCR) assays in MGC803 and HGC27 cells. The results demonstrated that 256 

neither basal respiration, maximal respiratory capacity, nor ATP-linked respiration showed 257 

significant alterations under different glucose concentrations (5.5 mM, 15 mM, and 25 mM) 258 

(Supplementary Figure S3). These results indicate that high glucose environment induces a 259 

high-glycolytic phenotype and low glucose environment induces a low-glycolytic phenotype in GC 260 

cells. Thus, these culture conditions were used for subsequent cell models. 261 

High-glucose environment promotes malignant phenotypes in GC cells. Changes in the 262 

functional phenotypes of GC cells in high- and low-glucose culture environments were determined. 263 

The proliferation rates of GC cells cultured in a high-glucose environment were significantly higher 264 

than the proliferation rates of cells cultured in a low-glucose environment (Figure 4A). Colony 265 

formation assays demonstrated that the number of colonies formed increased with higher glucose 266 

concentrations (Supplementary Figure S4A). Thus, increased glycolysis significantly enhances the 267 

proliferative capacity of GC cells. The numbers of migrating and invading cells were significantly 268 

higher in the high-glucose culture group compared with the numbers in the low-glucose culture 269 

group, indicating that the migration and invasion abilities of GC cells increased under high-glucose 270 

conditions (Figure 4B, Supplementary Figure S4B). Sphere formation assays indicated that the 271 

number of spheres formed by GC cells significantly increased in cells cultured in high-glucose 272 

concentrations compared with the number of spheres in cells cultured in low-glucose conditions, 273 

indicating that the stem cell- like properties of GC cells were enhanced in a high-glucose 274 

environment (Figure 4C). Overall, these results demonstrate that increased glycolysis levels are 275 

associated with the malignant phenotype of GC cells, including metastasis and stemness, and a 276 

high-glucose environment promotes these malignant traits. 277 

High-glucose environment promotes GC progression via the PI3K/AKT pathway. To further 278 

investigate the mechanisms by which high glucose regulates GC progression, DEGs in GC patients 279 

with high and low glycolysis in the TCGA-STAD dataset were analyzed. 2248 genes were 280 

upregulated and 165 genes were downregulated in the high glycolysis group compared to the low 281 

glycolysis group (Figure 5A). DEGs were mainly enriched in biological functions such as 282 

extracellular matrix, cell adhesion, and migration, according to GO analysis (Supplementary Figure 283 

S5A). And KEGG analysis demonstrated that DEGs were mainly enriched in the PI3K/AKT 284 

pathway (Figure 5B). GSEA analysis further confirmed that the PI3K/AKT (Figure 5C) was 285 



 

10 

significantly enriched in GC with high glycolysis. This was further validated by western blot 286 

analysis (Figure 5D, Supplementary Figure S6A), which demonstrated increased activation of the 287 

PI3K/AKT in GC cells with increasing glucose concentrations in the culture environment. 288 

Collectively, these results suggest that high glycolysis in GC enhances malignant phenotypes such 289 

as metastasis and stemness by activating the PI3K/AKT signal pathway. 290 

High-glucose environment promotes EMT and stemness in GC. The GSEA analysis indicated 291 

that the EMT and P53 pathways were significantly enriched in the high glycolysis group within the 292 

hallmark gene sets (Supplementary Figure S5B). Based on previous findings on the functional 293 

phenotypes of GC cells, it is tenable to hypothesize that a high-glucose environment influences 294 

EMT and stemness in GC. The EMTome database [15] was utilized to download a pan-cancer 295 

78-gene EMT signature, which was employed to construct an EMT score. EMT scores were 296 

significantly elevated in the high glycolysis group compared with the EMT scores in the low 297 

glycolysis group (Figure 6A), and EMT scores significantly correlated with GRG scores (Figure 298 

6B). Expression levels of EMT-related markers (N-cadherin, vimentin, and snail) were significantly 299 

higher in GC cells cultured in a high-glucose environment compared with cells cultured in a 300 

low-glucose environment (Figure 6C, Supplementary Figure S6B), confirming that increased 301 

glycolysis promotes EMT in GC cells. 302 

A stemness score was constructed using 109 tumor stem cell genes, as previously described [16]. 303 

Stemness scores were significantly elevated in the high glycolysis group compared to the scores in 304 

the low glycolysis group (Figure 6D); GRG scores significantly correlated with stemness (Figure 305 

6E). WB analysis confirmed the stemness-related molecular phenotype in GC cells. The expression 306 

levels of stemness-related markers (CD44, OCT4, and SOX2) were significantly higher in GC cells 307 

cultured in a high-glucose environment compared with the expression levels in GC cells cultured in 308 

a low-glucose environment (Figure 6F, Supplementary Figure S6C). Thus, elevated glycolysis 309 

influences stemness in GC cells. 310 

 311 

Discussion 312 

Despite recent advances in the diagnosis and treatment of GC, drug resistance is associated with 313 

low survival rates. Thus, identifying novel therapeutic targets and strategies for patients with GC is 314 

urgently needed [17]. High blood glucose levels are associated with poorer prognoses in cancer 315 
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patients, including those with GC [18, 19]. Diabetes is known to increase the risk of various cancers, 316 

such as liver, pancreatic, colorectal, and GCs. Most cancer patients with uncontrolled plasma 317 

glucose levels have poorer prognoses and shorter survival times [20, 21]. This highlights the impact 318 

of glucose metabolism on tumor stemness and metastasis [22, 23]. 319 

Increasing evidence suggests that relying on single clinical factors or individual gene characteristics 320 

often results in poor predictive performance. Now, we can focus on identifying a series of the most 321 

critical genes related to patient survival predictions, rather than conducting broad explorations. We 322 

constructed a high glycolysis score model (GRG score) based on clinical data and demonstrated that 323 

high glucose levels affect the prognosis of patients with GC, consistent with previous research 324 

findings [22, 23]. Subsequent survival analysis revealed that patients in the high GRG score group 325 

had worse prognoses. This result was validated with an independent ACGA cohort. The distribution 326 

of GRG scores differed significantly across molecular subtypes, with enrichment of high glycolysis 327 

in the GS subtype. These findings suggest that metabolic phenotypes may complement genomic 328 

classifications and offer an additional layer of tumor stratification, potentially paving the way for 329 

refined prognostic and therapeutic frameworks. GRG scores and clinical character istics were 330 

combined into a nomogram. The nomogram is an effective tool for the clinical diagnosis and 331 

treatment of GC patients. These results indicate that GRG scores and the nomogram strongly 332 

predict the prognosis of patients with GC and can guide clinical treatment decisions [24]. 333 

Subsequently, a high-glucose state was simulated in vitro by culturing cells in a high-glucose 334 

medium, thereby mimicking hyperglycemia. Prolonged exposure to elevated glucose levels 335 

increased glycolysis and enhanced malignancy-related phenotypes associated with cancer stemness 336 

[18]. The proliferation, migration, invasion, and self-renewal abilities of GC cells were significantly 337 

enhanced when exposed to high glucose. Active glycolysis is a hallmark of malignancy, typically 338 

accompanied by elevated levels of glycolytic enzymes and corresponding metabolites. Nevertheless, 339 

the precise mechanisms by which glycolysis contributes to tumorigenesis are unclear [25]. 340 

Increasing evidence indicates that metabolism, particularly glycolysis, and cancer stemness are 341 

intricately intertwined processes within tumor tissues [26]. Tumor cells exhibit active glycolytic 342 

activity and a strong dependence on glycolysis [27]. Abnormal increases in glycolytic intermediates 343 

or products are markers of enhanced cancer stemness and chemoresistance [13]. Additionally, CSCs 344 

exhibit significantly increased glucose uptake and lactate production and reduced mitochondrial 345 
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respiration [28]. Leveraging these metabolic changes may provide effective targeted therapeutic 346 

strategies, reducing the risk of recurrence and metastasis [29]. 347 

Regarding the molecular mechanisms of glucose-driven oncogenesis, glucose is widely recognized 348 

to promote cancer progression through various metabolic pathways. Tumor cells are capable of 349 

sensing extracellular glucose fluctuations and adaptively modulating intracellular metabolic flux, 350 

thereby regulating glycolytic activity and influencing stemness-related properties that contribute to 351 

tumor initiation and progression. In this study, we evaluated the effects of different glucose 352 

concentrations on glycolysis and oxidative phosphorylation (OXPHOS) by measuring ECAR and 353 

OCR, respectively. The results demonstrated that OXPHOS activity remained relatively stable 354 

across the tested glucose concentrations, whereas glycolytic activity, as indicated by ECAR, 355 

exhibited more pronounced dynamic changes in response to extracellular glucose levels. 356 

Previous studies have shown that tumor cells display highly dynamic metabolic adaptations to 357 

glucose availability, with the magnitude and direction of these shifts largely dependent on tumor 358 

type and metabolic plasticity. For instance, in glioblastoma, lower glucose concentrations (100 359 

mg/L) are associated with increased OCR, suggesting compensatory reliance on OXPHOS when 360 

glycolytic flux is restricted. In contrast, at higher glucose levels (1,000-4,500 mg/l), glycolytic 361 

reserve increases while OCR decreases, indicating a metabolic shift toward glycolysis [30]. 362 

Conversely, in breast cancer cells, glucose deprivation suppresses both ECAR and OCR, 363 

accompanied by ATP depletion, lactate reduction, mitochondrial depolarization, and activation of 364 

pyroptotic pathways [31]. These findings underscore the significant intertumoral variability in 365 

metabolic regulation and OXPHOS dependency. 366 

Our findings further support the notion that gastric cancer cells exhibit a distinct form of metabolic 367 

flexibility, maintaining relatively stable mitochondrial respiration while dynamically adjusting 368 

glycolytic activity in response to extracellular glucose availability. These observations complement 369 

the broader understanding that glucose promotes cancer progression through multiple metabolic 370 

pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, glycosylation, and lipid 371 

synthesis. Such metabolic reprogramming contributes to the activation of oncogenic signaling 372 

pathways, enhancing tumor cell proliferation, metastasis, drug resistance, and angiogenesis. 373 

Furthermore, high glucose levels can upregulate key enzymes in glucose metabolism, leading to 374 

increased glycolysis, glycosylation modifications, lactate production, and lipid synthesis. These 375 
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alterations in energy metabolism activate signaling pathways associated with invasive tumor 376 

phenotypes [18, 32], promoting tumor cell proliferation, metastasis, drug resistance, and 377 

angiogenesis. Hyperglycemia, both directly and indirectly, is associated with an increased risk for 378 

carcinogenesis. The mechanisms through which hyperglycemia contributes to carcinogenic 379 

pathways are numerous and complex. These include direct or indirect DNA damage, reactive 380 

oxygen species (ROS) formation, mutation accumulation, impaired DNA repair, and aberrant 381 

regulation of oncogenes and tumor suppressor genes [33]. These metabolic reprogramming and 382 

tumor microenvironment modifications ultimately promote cancer development and progression. 383 

The p53 checkpoint bypasses independent of mutations may represent the carcinogenic origin and 384 

targetable susceptibility of glucose-driven cancers [34]. Additionally, glucose can promote cancer 385 

without being metabolized. Glucose functions as an oncogenic signaling molecule that directly 386 

binds to NSUN2, inhibiting the activation of the STING pathway. Suppression of the STING 387 

pathway impedes the activation and infiltration of antitumor T cells, ultimately promoting cancer 388 

initiation and progression [35]. 389 

Energy-responsive growth signaling pathways are implicated in metabolic reprogramming to 390 

support abnormal proliferation and metastasis [36, 37]. As a key oncogenic signaling pathway, 391 

PI3K/AKT has emerged as an important therapeutic target in cancer treatment due to its central role 392 

in regulating tumor cell proliferation, survival, metabolism, and resistance. Our results demonstrate 393 

the effects of high glucose-mediated glycolysis on PI3K/AKT signaling in GC. This finding 394 

validates the impact of glycolysis on EMT and stemness-related biological and molecular 395 

phenotypes in tumor cells, consistent with previous studies [38]. Notably, several PI3K inhibitors 396 

have already been approved for clinical use in certain cancer types, and multiple 397 

PI3K/AKT-targeted agents are currently under active clinical investigation [39, 40]. Meanwhile, it 398 

is essential to acknowledge the constraints of our study when interpreting the results. The culturing 399 

of GC cells in varying glucose concentrations can only simulate a high-glucose environment and 400 

does not accurately represent the in vivo hyperglycemic environment. In addition, the current study 401 

is limited by the availability of cell models, and future investigations incorporating low-passage 402 

primary gastric cancer cells or patient-derived models would provide more clinically relevant 403 

insights. Furthermore, given that our analysis relies solely on retrospective TCGA data, future 404 

prospective clinical studies are needed to validate the relationship between blood glucose levels, 405 
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therapeutic response, and tumor progression. 406 

In conclusion, we demonstrate that elevated glycolysis is associated with worse clinical prognoses 407 

in patients with GC. A predictive model combining glycolysis and clinical features are developed 408 

and validated to assess patient prognosis. Additionally, we simulate a high-glucose environment by 409 

culturing GC cells in various glucose concentrations. This approach demonstrates that the 410 

high-glycolysis phenotype induced by a high-glucose environment significantly impacts malignant 411 

characteristics such as metastasis and stemness in GC cells. This mechanism may involve the 412 

PI3K/AKT pathway, which promotes EMT and regulates GC stemness by influencing glycolys is 413 

levels. Moving forward, we plan to investigate the mechanistic role of PI3K/AKT signaling through 414 

pharmacological inhibition and assess the therapeutic potential of combined targeting of glycolysis 415 

and the PI3K/AKT pathway. Our findings highlight the necessity for clinical attention to GC 416 

patients with hyperglycemia and present novel strategies and therapeutic targets for GC diagnosis 417 

and treatment by elucidating the underlying mechanisms. 418 
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Figure Legends 555 

 556 

Figure 1. Glycolysis-related gene (GRG) score analyses in patients with gastric cancer (GC) in the 557 

training and testing sets based on the four-GRGs. A) Heatmap of the four-GRG expression profile. 558 

B) Distribution of GRG scores per patient. C) Survival status and survival times of GC patients 559 

according to GRG scores. D) Kaplan-Meier plots showing overall survival (OS) in high- and 560 

low-GRG score groups. E, F) External validation of the GRG score model using expression data 561 

from the ACGA database. 562 

 563 

Figure 2. Combining glycolysis and clinical features to construct a nomogram for predicting the 564 

prognosis of GC patients. A) Forest plot illustrating the univariate Cox regression of the GRG 565 
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scores and corresponding clinical features. B) Age, TNM, stage, and GRG score were employed in 566 

the Nomogram, and the total score was used to predict the 1-, 3-, and 5-year prognosis of patients 567 

with GC. C) Calibration curve of the Nomogram to predict survival within 5 years. D) Receiver 568 

operating characteristic curves (ROC) curves for predicting prognosis using different predictive 569 

models at 1 year, 3 years, and 5 years. 570 

 571 

Figure 3. High and low glucose culture conditions induce high and low glycolytic phenotypes in 572 

GC cells. A) Glucose consumption, B) lactate production, C) intracellular adenosine 5'-triphosphate 573 

(ATP) production, and D) extracellular acidification rate (ECAR) in MGC803 and HGC27 cells 574 

cultured in different glucose concentrations. Data are shown as means±SD. **p < 0.01, ***p < 575 

0.001 576 

 577 

Figure 4. Culturing in different glucose concentrations affects the stem-related features of GC cells. 578 

A) Cell proliferation capacity, B) self-renewal ability (scale bar, 1000 μm), and (C) invasion ability 579 

(scale bar, 100 μm) of MGC803 and HGC27 cells cultured in different glucose concentrations. Data 580 

are presented as means±SD. *p < 0.05, **p < 0.01, ***p < 0.001. 581 

 582 

Figure 5. High-glucose environment culture contributes to the progression of GC via the 583 

PI3K/AKT pathway. A) Volcano plot showing the distribution of differentially expressed genes 584 

(DEGs) in high and low glycolysis-related gene (GRG) score groups. B) KEGG enrichment 585 

analysis of DEGs between the high and low GRG score groups. C) GSEA analysis of PI3K/AKT 586 

genes between the high and low GRG score groups. D) Western blots showing phosphorylation of 587 

proteins in the PI3K/AKT pathway in GC cells cultured in different glucose concentrations. 588 

 589 

Figure 6. High-glucose environment promotes epithelial-mesenchymal transition (EMT) and 590 

stemness in GC. A) Violin plot comparing the distribution of the EMT scores in the high- and 591 

low-GRG score groups. B) Correlation between the EMT and GRG scores in the TCGA database. C) 592 

Western blots showing expression of EMT-related markers in GC cells cultured in different glucose 593 

concentrations. D) Violin plot analysis comparing stemness scores in the high- and low-GRG score 594 

groups. E) Correlation between stemness and GRG scores in the TCGA database. F) Western blots 595 
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showing expression of stemness markers in GC cells cultured in different glucose concentrations. 596 
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