

1 NEOPLASMA accepted, ahead of print manuscript  
2 Cite article as [https://doi.org/10.4149/neo\\_2025\\_250629N284](https://doi.org/10.4149/neo_2025_250629N284)

3  
4 **Running title:** DNA methylation-predicted GDF-15 and mortality in cancer

5  
6 **DNA methylation-predicted GDF-15 and mortality in cancer survivors: a cohort study**

7  
8 Jingying Nong\*, Kejian Shi\*, Yi Zhang

9  
10 Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China

11  
12 \*Correspondence: [giantsand@163.com](mailto:giantsand@163.com); [xiaotian.tian2008@163.com](mailto:xiaotian.tian2008@163.com)

13  
14 **Received June 29, 2025 / Accepted December 23, 2025**

15  
16 Developing non-invasive prognostic biomarkers remains critical to improving personalized cancer  
17 care. Growth differentiation factor-15 (GDF-15), a TGF- $\beta$  family cytokine, plays a key role in  
18 tumorigenesis and immune evasion. Circulating GDF-15 serves as a biomarker for cancer prognosis,  
19 and DNA methylation (DNAm)-predicted GDF-15 has been linked to mortality risk in the general  
20 population. However, the association between DNAm-predicted GDF-15 and mortality risk in  
21 cancer survivors remains unexplored. We analyzed the association between DNAm-predicted  
22 GDF-15 and all-cause, long-term all-cause, and cancer mortality risks using a cohort of 343 cancer  
23 survivors from the National Health and Nutrition Examination Survey (NHANES) 1999-2002 with  
24 a median follow-up of 138 months. Multivariable Cox regression reporting hazard ratios (HRs) and  
25 95% confidence intervals (CIs) demonstrated that each 1-standard deviation (SD) increment in  
26 DNAm-predicted GDF-15 was associated with a 60% higher all-cause mortality risk adjusted with  
27 model 1 of age and sex, and a 54% greater all-cause mortality risk in model 2 adjusted additionally  
28 for ethnicity, education, smoking, and coronary heart disease. Participants in the high GDF-15  
29 tertile showed a 201% and 166% higher mortality risk in model 1 and model 2, respectively (both p  
30 for trend < 0.0001) compared to the low tertile. Its association with long-term mortality risk remains  
31 unchanged. Stratified analyses indicated consistent relationships across multiple subgroups.  
32 Kaplan-Meier and competing risk analyses revealed a graded increase in cancer mortality risk  
33 across ascending GDF-15 tertiles; Cox models confirmed a significant positive association per 1-SD  
34 increment in the unadjusted model and model 1, which remained consistent in direction and  
35 magnitude in model 2, with a marginally significant (p = 0.052). The current study provided  
36 evidence that DNAm-predicted GDF-15, an alternative and precise estimate of GDF-15 based on  
37 DNA methylation, is positively associated with all-cause and long-term all-cause mortality risks and  
38 showed a trend of positive association with cancer mortality among cancer survivors. Future larger  
39 longitudinal studies with serial DNAm-predicted GDF-15 assessments are needed to verify  
40 potential causal links.

41  
42 **Key words:** GDF-15; mortality; cancer; methylation; survival

43  
44

45 Cancer is the second leading cause of death in the United States and poses a significant public

46 health challenge globally [1]. The aging and expanding population is expected to result in a nearly  
47 50% rise in new cancer cases by 2050 [2]. Although there have been advancements in  
48 multidisciplinary treatment methods in recent years, the outlook for many patients with cancer  
49 continues to be unfavorable. Identifying more accurate, straightforward, and non-invasive screening  
50 markers related to cancer prognosis holds considerable clinical importance and has the potential to  
51 enhance prognostic predictions and facilitate personalized treatment strategies.

52 Growth differentiation factor-15 (GDF-15, also referred to as macrophage inhibitory cytokine-1,  
53 MIC-1) is a cytokine that belongs to the transforming growth factor- $\beta$  (TGF- $\beta$ ) protein family [3].  
54 The expression of GDF-15 is low under normal conditions except in the placenta. Its expression can  
55 be induced in response to stress conditions [4] and is reported to be abundantly produced in various  
56 cancers. It has been reported that GDF-15 plays an essential role in tumorigenesis [5-7]. In recent  
57 years, it has attracted growing interest as it has been found to interfere with antitumoral immune  
58 checkpoint blockade; neutralizing GDF-15 has shown potential for overcoming resistance and  
59 improving immunotherapy outcomes [8, 9]. Increasing evidence has demonstrated the circulating  
60 GDF-15 protein level to be an effective biomarker for early detection and prognosis in a spectrum  
61 of malignancies [10-15]. Epigenetic-related measures enable the quantification of DNA  
62 sequence-independent genomic alterations, providing a stable, long-term surrogate to circulating  
63 biomarkers [16-19]. DNA methylation (DNAm)-predicted GDF-15 was developed using DNAm  
64 levels of 137 CpGs as a surrogate of plasma level GDF-15 protein with a high correlation  
65 coefficient [20]. It has been reported to be an effective predictor for mortality risk in a general  
66 population [17]. However, the association between DNAm-predicted GDF-15 and mortality risk in  
67 cancer survivors remains unclear; in addition, the associations between DNAm-predicted GDF-15  
68 and long-term mortality and cancer mortality are lacking.

69 We hypothesize that DNAm-predicted GDF-15 is positively associated with mortality risk in cancer  
70 individuals and investigate the relationship using a cohort of 343 cancer survivors from the  
71 NHANES dataset 1999-2002.

72

### 73 **Patients and methods**

74 **Study population.** This cross-sectional study utilized data from NHANES 1999-2000 and  
75 2001-2002 as the DNA methylation epigenetic biomarker data, released on July 31, 2024, were

76 exclusively available in these cycles in a selection of participants aged 50 years or older, and were  
77 not collected or released in any other NHANES cycles. The NHANES protocols, including  
78 experimental procedures, were approved by the National Centre for Health Statistics Research  
79 Ethics Review Board. All participants provided written informed consent without compensation,  
80 and the requirement for consent to use public data was waived. NHANES employed a complex,  
81 stratified, clustered probability design to recruit a nationally representative sample of  
82 non-institutionalized US civilians. The survey consists of two parts: interviews conducted at  
83 participants' homes and physical examinations carried out at mobile examination centers. Additional  
84 details about NHANES procedures are available at (<https://www.cdc.gov/nchs/nhanes/index.htm>).  
85 The study adhered to the Declaration of Helsinki principles, and its reporting was guided by the  
86 STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guideline. From  
87 the initial pool of 21,004 participants, exclusions were made for the following reasons: self-reported  
88 denial of a cancer diagnosis (N=20,494); missing DNA epigenetic marker data (N=563). No  
89 participants were excluded due to missing mortality follow-up data. The final analysis included 343  
90 cancer survivors.

91 **Ascertainment of cancer.** Cancer diagnoses were self-reported and determined [21] by participants  
92 in response to the question: "Has a doctor or health professional ever diagnosed you with cancer or  
93 any malignancy?". Trained interviewers administered this assessment using the Computer-Assisted  
94 Personal Interview (CAPI) system [22], which includes built-in consistency checks to reduce data  
95 entry errors.

96 **DNAm-predicted GDF-15 measurement.** DNAm-predicted GDF-15 was developed using  
97 methylation levels at 137 CpG sites, which showed high correlation with plasma GDF-15 protein  
98 levels [20]. DNA was extracted from whole blood samples collected from a randomly selected  
99 subset of NHANES participants aged 50 years or older, with storage at -80 °C. DNA methylation  
100 analysis was performed using the Illumina Infinium MethylationEPIC BeadChip v1.0 (Illumina,  
101 San Diego, CA, USA). The raw methylation data underwent preprocessing, normalization, and  
102 biomarker calculation in R (version 4.3). Detailed laboratory protocols and bioinformatics  
103 workflows are documented  
104 (<https://www.cdc.gov/nchs/data/nhanes/dnam/NHANES%20DNAm%20Epigenetic%20Biomarker%20Data%20Documentation.pdf>).

106 **Mortality.** Mortality status and follow-up data were sourced from the publicly available National  
107 Death Index-linked mortality file. All-cause mortality was defined as death due to any reason.  
108 Cancer mortality was defined as deaths attributed to malignant neoplasms (ICD-10 codes C00-C97).  
109 Person-months of follow-up were calculated from the NHANES mobile examination center visit  
110 date until either the date of death or the end of the mortality follow-up period (December 31, 2019).  
111 **Covariates.** Participants were classified as smokers if they had smoked a cumulative total of 100 or  
112 more cigarettes during their lifetime; otherwise, they were categorized as non-smokers. The  
113 diagnoses of coronary heart disease (CHD), hypertension, diabetes, and chronic kidney disease  
114 were self-reported and determined according to the responses to the NHANES interview  
115 questionnaire [21, 23, 24]. Biological aging [25] was evaluated using the HorvathAge epigenetic  
116 clock [26], which was categorized into 3 tertiles (low, middle, and high). Frailty assessment used a  
117 modified version following the principle of the Modified Fried Frailty Phenotype [27]. As the  
118 NHANES 1999–2002 did not contain variables corresponding to the criterion of exhaustion, to be  
119 consistent with the conceptual framework of the original model, we included four of the five  
120 components (weakness, low physical activity, slow walking speed, and unintentional weight loss).  
121 Participants were subsequently categorized into two frailty strata for analysis: little or no  
122 (demonstrating zero to two criteria) and pronounced frailty (demonstrating three or more criteria).  
123 **Statistical analysis.** Baseline characteristics were reported as means and standard deviations (SD)  
124 for continuous variables and counts and percentages for categorical variables. Group differences  
125 were assessed using Student's t-tests for continuous variables and Chi-square tests for categorical  
126 variables. DNAm-predicted GDF-15 was analyzed as a continuous measure (per 1-SD increase) or  
127 categorized into tertiles, with the low tertile as the reference. Rescrtic cubic spline and  
128 Kaplan-Meier curves were employed to demonstrate the association between DNAm-predicted  
129 GDF-15 and mortality. To mitigate potential reverse causality, the association between  
130 DNAm-predicted GDF-15 and long-term all-cause mortality was assessed by excluding participants  
131 who died within the first two years of follow-up. For the association between DNAm-predicted  
132 GDF-15 and cancer mortality, competing risk analysis using the Fine-Grey hazard model was  
133 conducted, treating deaths from non-cancer causes as competing events. To analyze the association  
134 between DNAm-predicted GDF-15 and mortality risk, we performed multivariable Cox regression,  
135 reporting hazard ratios (HRs) and 95% confidence intervals (CIs). Multivariable adjustments were

136 made in two models. Model 1 was adjusted for age and sex. Model 2 was further adjusted for  
137 race/ethnicity (non-Hispanic White, non-Hispanic Black, Mexican American, others), education  
138 level (< high school, high school equivalent,  $\geq$  college), smoking status (smoker, non-smoker), and  
139 CHD. Stratified analyses were conducted by sex (male/female), age (50-65 vs.  $>$  65 years),  
140 race/ethnicity, education level, smoking status, and CHD. Each subgroup analysis was adjusted for  
141 all covariates except the stratification variable. Potential effect modification was tested using  
142 log-likelihood ratio tests. As sensitivity analyses, stratified analyses were further employed by  
143 adjusting for hypertension, diabetes, chronic kidney disease, biological aging evaluated by  
144 HorvathAge epigenetic clock tertiles, and frailty based on model 2 to assess whether  
145 DNAm-predicted GDF-15 offers prognostic value in cancer survivors beyond its general  
146 association with aging-related mortality. All statistical analyses were performed in R (version 4.4),  
147 with statistical significance set at p-value  $<$  0.05 (two-tailed).

148

## 149 **Results**

150 **Baseline characteristics.** The baseline characteristics of 343 cancer survivors are presented in  
151 Table 1. Participants in the high tertile of DNAm-predicted GDF-15 were older, less likely to be  
152 well-educated, and more likely to be male ( $p < 0.05$ ).

153 **DNAm-predicted GDF-15 and mortality.** A median follow-up of 138 months (range 7-248  
154 months) documented 239 all-cause deaths. Cancer survivors exhibited a positive linear association  
155 between DNAm-predicted GDF-15 levels and increased all-cause mortality risk (Figure 1A),  
156 Kaplan-Meier analysis revealed those in the low GDF-15 tertile maintained the highest survival  
157 probability throughout follow-up (log-rank  $p < 0.001$ , Figure 1B). Multivariable Cox regression  
158 demonstrated each 1-SD increment in DNAm-predicted GDF-15 conferred a 60% greater mortality  
159 risk after age and sex adjustment, which remained a 54% higher after further adjustment for  
160 race/ethnicity, education level, smoking, and CHD. Participants in the high GDF-15 tertile showed a  
161 201% and 166% increased mortality risk in model 1 and fully adjusted model, respectively (both  
162 p-values for trend  $< 0.0001$ ), with the low tertile serving as reference (Table 2).

163 After excluding 23 subjects who died within two years of follow-up, the association between  
164 DNAm-predicted GDF-15 and long-term all-cause mortality remained consistent with the primary  
165 outcome (Table 3). Multivariable Cox regression indicated that each 1-SD increase in

166 DNAm-predicted GDF-15 was associated with a 64% higher long-term mortality risk in model 1,  
167 with this association persisting at a 54% higher risk in model 2. For tertile comparisons, the high  
168 GDF-15 tertile had a 211% and 151% higher long-term mortality risk compared to the low tertile in  
169 models 1 and 2, respectively (both p-values for trend < 0.0001).

170 Sixty-nine cancer deaths were documented. Kaplan-Meier analysis demonstrated significantly  
171 higher cancer mortality risk for participants in the high tertile of DNAm-predicted GDF-15  
172 compared to those in the low tertile (log-rank p < 0.001; Figure 2A). The cumulative incidence  
173 curves from the competing risk analysis showed a graded increase in the probability of cancer death  
174 across ascending GDF-15 tertiles (Figure 2B). Cox regression analyses revealed that each 1-SD  
175 increase in DNAm-predicted GDF-15 was associated significantly with a 72% and a 39% increase  
176 higher risk of cancer mortality in the unadjusted model and model 1 respectively. In model 2, the  
177 magnitude and direction of the association were consistent with those observed in model 1, with  
178 marginal significance (p=0.052). A positive but non-significant trend was observed across  
179 increasing GDF-15 levels in model 2 (p-value for trend = 0.057) when analyzed by tertiles (Table  
180 4).

181 **Stratified analyses.** Stratified analyses (Figure 3) indicated that the observed association between  
182 DNAm-predicted GDF-15 and all-cause mortality was consistent across various subgroups,  
183 including age, sex, ethnicity, education level, and CHD. Smoking status showed effect modification  
184 when unadjusted for multiple comparisons. After Benjamini–Hochberg false discovery rate (FDR)  
185 correction (q=0.05), none of the variables show statistically significant effect modification.

186 **Sensitivity analyses.** After further adjusting for hypertension, diabetes, chronic kidney disease,  
187 HorvathAge, and frailty based on model 2, stratified analysis showed that the association between  
188 DNAm-predicted GDF-15 and all-cause mortality remained consistent across the majority of  
189 subgroups, including cancer survivors without hypertension (1.89, 1.37-2.61), without diabetes  
190 (1.58, 1.30-1.92), without chronic kidney disease (1.62, 1.36-1.93), those with slower epigenetic  
191 aging (HorvathAge low tertile, 1.46, 1.04-2.06; middle tertile, 1.71, 1.16-2.52), and those with little  
192 or no frailty (1.61, 1.35-1.93), with most interaction terms being statistically nonsignificant except  
193 for education level and chronic kidney disease. The subgroup of chronic kidney disease should be  
194 considered as exploratory due to the small sample size (n=21) (Supplementary Table S1).

195

196 **Discussion**

197 This prospective cohort study of 343 cancer survivors with a median follow-up of 138 months  
198 demonstrated that the baseline DNAm-predicted GDF-15 was significantly and positively  
199 associated with the risk of all-cause and long-term all-cause mortality. The association remained  
200 consistent in both unadjusted and fully adjusted models. Stratified analyses indicated robust  
201 relationships across multiple subgroups. A positive association was consistently observed between  
202 DNAm-predicted GDF-15 and cancer mortality. These results suggest that DNAm-predicted  
203 GDF-15 may serve as a potential prognostic biomarker for the risk of mortality in cancer  
204 individuals.

205 Our study showed a positive association between DNAm-predicted GDF-15 and all-cause and  
206 long-term mortality in cancer individuals. Similarly, Luo and Shen reported that DNAm-predicted  
207 GDF-15 was significantly associated with all-cause mortality risks among a population of  
208 NHANES 1999-2002 without disease-based selection (N=1,912, with 267 cancer participants  
209 included) [17]. However, Luo et al. did not assess the association between DNAm-predicted  
210 GDF-15 and the risks of long-term and cancer-specific mortalities; in addition, our study was  
211 restricted to cancer survivors (N=343), which extends previous findings by validating  
212 DNAm-GDF-15 as an effective prognostic marker in a distinct high-risk group and enhances  
213 generalizability. DNAm-predicted GDF-15 was constructed using a subset of 137 CpGs that linear  
214 combination best predicted plasma GDF-15 protein level, and has been proven to be an effective  
215 surrogate measure, with a reported correlation of 0.74 and 0.53 of plasma GDF-15 protein in the  
216 training and test data, respectively [20]. The circulating DNAm-predicted GDF-15 and GDF-15  
217 protein are both related, yet distinct. Methylation patterns can vary in response to disease conditions,  
218 aging, and environmental stressors, with DNA methylation at specific CpG sites influencing gene  
219 expression. Consequently, DNAm-predicted GDF-15 may offer a more consistent and long-term  
220 assessment of physiological stress compared to plasma GDF-15 protein to some degree. Although  
221 few studies have explored the association between DNAm-predicted GDF15 and mortality, the  
222 associations between elevated circulating GDF-15 and mortality risks [28-30], metabolic  
223 dysfunctions, frailty, and biological aging [31-33] have been established across diverse patient  
224 populations and clinical settings. Our findings could partly be explained by that, as a  
225 stress-responsive cytokine, GDF-15 expression was induced by oxidative stress, inflammation, and

226 mitochondrial dysfunction, leading to an increase in circulating GDF-15 concentration among  
227 cancer survivors with higher mortality risk. Considering that GDF-15 is strongly associated with  
228 frailty, a state of reduced stress tolerance to external stressors [34] that may result from disease  
229 progression, and to mitigate reverse causality, where elevated DNAm-predicted GDF-15 could  
230 merely reflect frailty-induced outcomes as a consequence of the late stage of disease, we excluded  
231 participants who died within two years of follow-up. DNAm-predicted GDF-15 remained  
232 significantly associated with an increased risk of long-term mortality. Notably, stratified analyses  
233 showed consistent findings of the positive association between DNAm-predicted GDF-15 and  
234 all-cause mortality in cancer survivors without hypertension, diabetes, chronic kidney disease, with  
235 slower epigenetic aging, and those with little or no frailty, these support that the relationship  
236 between DNAm-predicted GDF-15 and mortality risk in the cancer population may involve broader  
237 mechanisms beyond merely reflecting frailty status or aging-related decline.

238 We also found a trend of positive association between DNAm-predicted GDF-15 and cancer  
239 mortality risk, which has not been reported before. In the realm of cancer, a body of clinical  
240 literature has proven plasma GDF-15 to be an effective prognostic marker of survival in various  
241 malignancies. In a cohort of locally advanced NSCLC patients undergoing chemoradiotherapy,  
242 elevated baseline plasma GDF-15 levels demonstrated significant positive correlations with larger  
243 gross tumor volumes and independently predicted inferior relapse-free survival and overall survival  
244 in multivariate analyses [14]. A meta study showed that lung cancer patients with high GDF-15  
245 levels were strongly associated with poorer 3-year overall survival (OR 4.05, 95% CI 1.92-8.51)  
246 compared to those with low levels, supporting its role as a robust prognostic biomarker in cancer  
247 outcomes [13]. In lower-grade glioma patients from the TCGA cohort, elevated GDF-15 expression  
248 was found to be correlated with aggressive clinical features and served as an independent predictor  
249 of poor overall survival [11]. In both pancreatic ductal adenocarcinoma patients and preclinical  
250 mouse models, GDF-15 was reported to be a robust independent prognostic biomarker, with rising  
251 levels correlating to tumor burden, cachexia development, and poorer survival outcomes, suggesting  
252 its utility for early detection and risk stratification [12]. A possible explanation for the association,  
253 although the precise mechanism needs further elucidation, is that GDF-15 has protumorigenic  
254 properties. On one hand, it could mediate multiple downstream signaling cascades involved in  
255 cancer progression. These include the oncogenic pathways of PI3K/AKT and MAPK signaling, as

256 evidenced by phosphorylation of AKT1 and MAPK in prostate, cervical, and colorectal cancers,  
257 enhancing cell survival and therapy resistance [35, 36], epithelial-mesenchymal transition (EMT)  
258 and metastatic invasion through IGF1R and MAPK phosphorylation, facilitating tumor  
259 dissemination in breast cancer [37], and SMAD signaling in head and neck cancer and glioblastoma,  
260 sustaining cancer stem cell populations and conferring resistance to radiation therapy [38, 39]. On  
261 the other hand, GDF-15 plays a critical role in suppressing T cell migration, facilitating tumor  
262 immune evasion, creating an immunosuppressive tumor microenvironment, and leading to  
263 resistance to cancer immunotherapy [9]. Neutralizing GDF-15 has shown promising potential in  
264 sensitizing resistant tumors to the immune checkpoint inhibitors [8]. Additionally, GDF-15 has been  
265 reported to activate the hypoxia-inducible factor-1 $\alpha$  (HIF-1 $\alpha$ ) and facilitate tumor angiogenesis [40].  
266 However, a dual role of GDF-15 in tumorigenesis has been proposed [41, 42]. In contrast to its  
267 oncogenic property, GDF-15 could also exhibit a tumoral suppressor property, although the latter is  
268 reported much less often than the former. For example, in preclinical animal studies, the  
269 overexpression of GDF-15 in cancer cell lines, including HCT116, MCF-7, PC-3, and glioblastoma,  
270 could inhibit tumor growth [43, 44]. Moreover, the expression of GDF-15 has been shown to induce  
271 apoptosis in various cancer cells *in vitro* [45]. Its antitumor and protumor effects may vary  
272 depending on the type and stage of cancer [42]. In addition to its context-dependent anti- and  
273 pro-tumorigenic functions, GDF15 has been implicated in cachexia [46], a condition often viewed  
274 as a consequence of either direct tumor progression or the host's aberrant homeostatic response to  
275 cancer-induced systemic physiological alterations spanning the processes of tumor initiation and  
276 progression [47]. As our study focused on a pan-cancer population and lacked distinct cancer  
277 staging, and given the diversity of cancer types, it was not feasible to analyze the relationship for  
278 each specific cancer. In addition, it should be noted that although the observed hazard ratios for  
279 DNAm-predicted GDF-15 consistently suggested a positive trend of elevated cancer mortality risk,  
280 the 95% confidence intervals in the adjusted models were wide and included the null value at the  
281 lower bound (e.g., model 2, per 1-SD: 1.00–1.90), resulting in borderline  $P$  values ( $P = 0.052$ ). The  
282 lack of definitive statistical significance is likely attributable in large part to a low  
283 event-per-variable ratio, thereby limiting the statistical power of the multivariate models. Therefore,  
284 the association between DNAm-predicted GDF-15 and cancer-specific mortality remains  
285 inconclusive and should be validated through larger cohort studies focusing on specific cancer

286 types.

287 The current study has several strengths. We provide the first evidence of a positive association  
288 between DNAm-predicted GDF-15 and mortality risks among the cancer population. The use of a  
289 prospective cohort based on a non-institutional U.S cancer sample enhances generalizability.  
290 Detailed covariate data were considered as possible confounders. Our study reported a positive  
291 association between DNAm-predicted GDF-15 levels and long-term mortality, which supports the  
292 potential role of GDF-15 in predicting survival beyond its established link to frailty and mitigates  
293 concerns about reverse causality. Several limitations of the current study should be acknowledged.  
294 First, DNAm-predicted GDF-15 was measured only once, limiting insight into temporal  
295 fluctuations compared to repeated assessments. Second, although cancer diagnoses followed  
296 standardized protocols, self-reported data inherently carry risks of recall bias and misclassification  
297 without clinical verification. Third, cause-of-death information from death certificates may not  
298 always be precise. Fourth, the dataset lacked granular details on cancer types, stages, and treatment  
299 records, which could potentially influence the observed associations. Fifth, the independent  
300 association between GDF-15 and cancer mortality should be considered tentative due to the low  
301 number of cancer-specific deaths. In addition, despite our efforts to adjust for confounders, residual  
302 or unmeasured factors may still have affected the results. Finally, the current findings cannot  
303 establish causality among cancer survivors. Future larger longitudinal studies involving serial  
304 DNAm-predicted GDF-15 assessments are required.

305 In conclusion, the current study provided preliminary evidence that DNAm-predicted GDF-15, an  
306 alternative and precise estimate of GDF-15 based on DNA methylation, is an effective predictor  
307 positively associated with all-cause and long-term all-cause mortality risks and showed a trend of  
308 positive association with cancer mortality among cancer survivors. Future larger longitudinal  
309 studies with serial DNAm-predicted GDF-15 assessments are needed to verify potential causal  
310 links.

311

312 Acknowledgements: This research was supported by the Innovation and Transformation Fund  
313 (CXZH202406)

314

315 **Supplementary data are available in the online version of the paper.**

316

317

318 **References**

319 [1] SIEGEL RL, MILLER KD, WAGLE NS, JEMAL A. Cancer statistics, 2023. CA Cancer J  
320 Clin 2023; 73: 17-48. <https://doi.org/10.3322/caac.21763>

321 [2] SUNG H, FERLAY J, SIEGEL RL, LAVERSANNE M, SOERJOMATARAM I et al. Global  
322 Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for  
323 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209-249.  
324 <https://doi.org/10.3322/caac.21660>

325 [3] BOOTCOV MR, BAUSKIN AR, VALENZUELA SM, MOORE AG, BANSAL M et al.  
326 MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta  
327 superfamily. Proc Natl Acad Sci U S A. 1997; 94: 11514-11519.  
328 <https://doi.org/10.1073/pnas.94.21.11514>

329 [4] TSAI VWW, HUSAINI Y, SAINSBURY A, BROWN DA, BREIT SN. The  
330 MIC-1/GDF15-GFRAL Pathway in Energy Homeostasis: Implications for Obesity,  
331 Cachexia, and Other Associated Diseases. Cell Metab 2018; 28: 353-368.  
332 <https://doi.org/10.1016/j.cmet.2018.07.018>

333 [5] KOTSONI A, KOZAKI LV, STYLIANOU A, GKRETSI V. Interdependent roles for growth  
334 differentiation factor-15 (GDF15) and LIMS1 in regulating cell migration: Implications for  
335 colorectal cancer metastasis. Biochim Biophys Acta Mol Cell Res 2025; 1872: 119904.  
336 <https://doi.org/10.1016/j.bbamcr.2025.119904>

337 [6] JOO M, KIM D, LEE MW, LEE HJ, KIM JM. GDF15 Promotes Cell Growth, Migration,  
338 and Invasion in Gastric Cancer by Inducing STAT3 Activation. Int J Mol Sci 2023; 24.  
339 <https://doi.org/10.3390/ijms24032925>

340 [7] RAI AB, CODI JAK, SUCHITHA GP, HEMAVATHI KN, DAGAMAJALU S et al.  
341 Mapping growth differentiation factor-15 (GDF15)-mediated signaling pathways in cancer:  
342 insights into its role across different cancer types. Discov Oncol 2025; 16: 386.  
343 <https://doi.org/10.1007/s12672-025-02121-1>

344 [8] MELERO I, DE MIGUEL LUKEN M, DE VELASCO G, GARRALDA E,  
345 MARTIN-LIBERAL J et al. Neutralizing GDF-15 can overcome anti-PD-1 and anti-PD-L1  
346 resistance in solid tumours. Nature 2025; 637: 1218-1227.  
347 <https://doi.org/10.1038/s41586-024-08305-z>

348 [9] MELERO I, KLAR K, LEO E. GDF-15 blockade: A multi-directional approach to potentiate  
349 cancer immunotherapy and alleviate cancer cachexia. Clin Transl Med 2025; 15: e70280.  
350 <https://doi.org/10.1002/ctm2.70280>

351 [10] DEPOTTE L, NAY P, BORG C, MEURISSE A, HENRIQUES J et al. Interplay between  
352 sarcopenia, GDF-15, and the efficacy of nivolumab plus ipilimumab in patients with  
353 mismatch repair deficient metastatic colorectal cancer: final survival analysis of the phase II  
354 GERCOR NIPICOL study. J Immunother Cancer 2025; 13.  
355 <https://doi.org/10.1136/jitc-2024-011220>

356 [11] WANG Y, CHEN J, CHEN C, PENG H, LIN X et al. Growth differentiation factor-15  
357 overexpression promotes cell proliferation and predicts poor prognosis in cerebral  
358 lower-grade gliomas correlated with hypoxia and glycolysis signature. Life Sci 2022; 302:  
359 120645. <https://doi.org/10.1016/j.lfs.2022.120645>

360 [12] ZHU X, OLSON B, KEITH D, NORGARD MA, LEVASSEUR PR et al. GDF15 and LCN2  
361 for early detection and prognosis of pancreatic cancer. *Transl Oncol* 2024; 50: 102129.  
362 <https://doi.org/10.1016/j.tranon.2024.102129>

363 [13] PAN T, DUAN R, XU Z, HE X, LUO X et al. GDF-15 as a biomarker for diagnosis and  
364 prognosis of lung cancer: a meta-analysis. *Front Oncol* 2025; 15: 1447990.  
365 <https://doi.org/10.3389/fonc.2025.1447990>

366 [14] DI PASTENA F, POND G, TSAKIRIDIS EE, GOUVEIA A, AHMADI E et al. Growth  
367 differentiation factor 15 (GDF15) predicts relapse free and overall survival in unresected  
368 locally advanced non-small cell lung cancer treated with chemoradiotherapy. *Radiat Oncol*  
369 2024; 19: 155. <https://doi.org/10.1186/s13014-024-02546-y>

370 [15] NOPPS S, MOIK F, KRALER S, ENGLISCH C, PREUSSER M et al. Growth differentiation  
371 factor-15 and prediction of cancer-associated thrombosis and mortality: a prospective cohort  
372 study. *J Thromb Haemost* 2023; 21: 2461-2472. <https://doi.org/10.1016/j.jtha.2023.04.043>

373 [16] VERSCHOOR CP, VLASSCHAERT C, RAUH MJ, PARE G. A DNA methylation based  
374 measure outperforms circulating CRP as a marker of chronic inflammation and partly  
375 reflects the monocytic response to long-term inflammatory exposure: A Canadian  
376 Longitudinal Study on Aging analysis. *Aging Cell* 2023; 22: e13863.  
377 <https://doi.org/10.1111/acel.13863>

378 [17] LUO H, SHEN Y. Association between DNA methylation predicted growth differentiation  
379 factor 15 and mortality: results from NHANES 1999-2002. *Aging Clin Exp Res* 2024; 36:  
380 234. <https://doi.org/10.1007/s40520-024-02896-3>

381 [18] BANNISTER S, KIM B, DOMINGUEZ-ANDRES J, KILIC G, ANSELL BRE et al. Neonatal BCG vaccination is associated with a long-term DNA methylation signature in  
382 circulating monocytes. *Sci Adv* 2022; 8: eabn4002. <https://doi.org/10.1126/sciadv.abn4002>

384 [19] EISENBERG DTA, RYAN CP, LEE NR, CARBA DB, MACISAAC JL et al. DNA  
385 methylation-based estimators of telomere length show low correspondence with paternal age  
386 at conception and other measures of external validity of telomere length. *Geroscience* 2024;  
387 46: 3957-3969. <https://doi.org/10.1007/s11357-024-01114-2>

388 [20] LU AT, QUACH A, WILSON JG, REINER AP, AVIV A et al. DNA methylation GrimAge  
389 strongly predicts lifespan and healthspan. *Aging (Albany NY)* 2019; 11: 303-327.  
390 <https://doi.org/10.18632/aging.101684>

391 [21] NONG J, TONG J, WANG R, SHI K, ZHANG Y. Associations of sleep disorders with  
392 all-cause and cause-specific mortality in cancer survivors: a cross-sectional analysis of the  
393 NHANES 2005-2016. *BMC Psychiatry* 2024; 24: 118.  
394 <https://doi.org/10.1186/s12888-024-05589-3>

395 [22] LI C, FORD ES, ZHAO G, TSAI J, BALLUZ LS. A comparison of depression prevalence  
396 estimates measured by the Patient Health Questionnaire with two administration modes:  
397 computer-assisted telephone interviewing versus computer-assisted personal interviewing.  
398 *Int J Public Health* 2012; 57: 225-233. <https://doi.org/10.1007/s00038-011-0253-9>

399 [23] NONG J, WANG R, ZHANG Y. Association of lymphocyte-to-C-reactive protein ratio with  
400 all-cause and cause-specific mortality among US cancer survivors. *Eur J Med Res* 2025; 30:  
401 312. <https://doi.org/10.1186/s40001-025-02527-1>

402 [24] NONG J, ZHANG Y. Circulating Klotho and mortality patterns among US cancer survivors:  
403 A cohort study. *Medicine* 2025; 104. <https://doi.org/10.1097/md.00000000000043471>

404 [25] PERRI G, FRENCH C, AGOSTINIS-SOBRINHO C, ANAND A, ANTARIANTO RD et al.  
405 An expert consensus statement on biomarkers of ageing for use in intervention studies. *J*  
406 *Gerontol A Biol Sci Med Sci* 2024. <https://doi.org/10.1093/gerona/glae297>

407 [26] HORVATH S. DNA methylation age of human tissues and cell types. *Genome Biol.* 2013;  
408 14: R115. <https://doi.org/10.1186/gb-2013-14-10-r115>

409 [27] KURNAT-THOMA EL, MURRAY MT, JUNEAU P. Frailty and Determinants of Health  
410 Among Older Adults in the United States 2011-2016. *J Aging Health* 2022; 34: 233-244.  
411 <https://doi.org/10.1177/08982643211040706>

412 [28] XIE S, LI Q, LUK AOY, LAN HY, CHAN PKS et al. Major Adverse Cardiovascular Events  
413 and Mortality Prediction by Circulating GDF-15 in Patients with Type 2 Diabetes: A  
414 Systematic Review and Meta-Analysis. *Biomolecules* 2022; 12.  
415 <https://doi.org/10.3390/biom12070934>

416 [29] CICERI P, BONO V, MAGAGNOLI L, SALA M, ARTIOLI L et al. MO409: GDF-15 is a  
417 Predictor of Mortality in Chronic Kidney Disease Patients With Covid-19 Infection. *Nephrol*  
418 *Dial Transplant* 2022; 37: 2295 <https://doi.org/10.1093/ndt/gfac070.023>

419 [30] KOKKORAKIS M, FOLKERTSMA P, FORTE JC, WOLFFENBUTTEL BHR, VAN DAM  
420 S et al. GDF-15 improves the predictive capacity of steatotic liver disease non-invasive tests  
421 for incident morbidity and mortality risk for cardio-renal-metabolic diseases and  
422 malignancies. *Metabolism* 2025; 163: 156047.  
423 <https://doi.org/10.1016/j.metabol.2024.156047>

424 [31] TIAN T, LIU M, LITTLE PJ, STRIJDOM H, WENG J et al. Emerging Roles of GDF15 in  
425 Metabolic and Cardiovascular Diseases. *Research (Wash D C)* 2025; 8: 0832.  
426 <https://doi.org/10.34133/research.0832>

427 [32] GONCALVES R, MACIEL ACC, ROLLAND Y, VELLAS B, DE SOUTO BARRETO P.  
428 Frailty biomarkers under the perspective of geroscience: A narrative review. *Ageing Res Rev*  
429 2022; 81: 101737. <https://doi.org/10.1016/j.arr.2022.101737>

430 [33] CONTE M, GIULIANI C, CHIARIELLO A, IANNUZZI V, FRANCESCHI C et al.  
431 GDF15, an emerging key player in human aging. *Ageing Res Rev* 2022; 75: 101569.  
432 <https://doi.org/10.1016/j.arr.2022.101569>

433 [34] KAMPER RS, NYGAARD H, PRAEGER-JAHNSEN L, EKMANN A, DITLEV SB et al.  
434 GDF-15 is associated with sarcopenia and frailty in acutely admitted older medical patients.  
435 *J Cachexia Sarcopenia Muscle* 2024; 15: 1549-1557. <https://doi.org/10.1002/jcsm.13513>

436 [35] CHEN SJ, KARAN D, JOHANSSON SL, LIN FF, ZECKSER J et al. Prostate-derived  
437 factor as a paracrine and autocrine factor for the proliferation of androgen receptor-positive  
438 human prostate cancer cells. *Prostate* 2007; 67: 557-571. <https://doi.org/10.1002/pros.20551>

439 [36] NAZAROVA N, QIAO S, GOLOVKO O, LOU YR, TUOHIMAA P. Calcitriol-induced  
440 prostate-derived factor: autocrine control of prostate cancer cell growth. *Int J Cancer* 2004;  
441 112: 951-958. <https://doi.org/10.1002/ijc.20510>

442 [37] PEAKE BF, EZE SM, YANG L, CASTELLINO RC, NAHTA R. Growth differentiation  
443 factor 15 mediates epithelial mesenchymal transition and invasion of breast cancers through  
444 IGF-1R-FoxM1 signaling. *Oncotarget* 2017; 8: 94393-94406.  
445 <https://doi.org/10.18632/oncotarget.21765>

446 [38] PENG H, LI Z, FU J, ZHOU R. Growth and differentiation factor 15 regulates PD-L1  
447 expression in glioblastoma. *Cancer Manag Res* 2019; 11: 2653-2661.  
448 <https://doi.org/10.2147/CMAR.S192095>

449 [39] LI YL, CHANG JT, LEE LY, FAN KH, LU YC et al. GDF15 contributes to radioresistance  
450 and cancer stemness of head and neck cancer by regulating cellular reactive oxygen species  
451 via a SMAD-associated signaling pathway. *Oncotarget* 2017; 8: 1508-1528.  
452 <https://doi.org/10.18632/oncotarget.13649>

453 [40] MIELCARSKA S, STOPINSKA K, DAWIDOWICZ M, KULA A, KICZMER P et al.  
454 GDF-15 Level Correlates with CMKLR1 and VEGF-A in Tumor-free Margin in Colorectal  
455 Cancer. *Curr Med Sci* 2021; 41: 522-528. <https://doi.org/10.1007/s11596-021-2335-0>

456 [41] WANG X, BAEK SJ, ELING TE. The diverse roles of nonsteroidal anti-inflammatory drug  
457 activated gene (NAG-1/GDF15) in cancer. *Biochem Pharmacol* 2013; 85: 597-606.  
458 <https://doi.org/10.1016/j.bcp.2012.11.025>

459 [42] HASANPOUR SEGHERLOU Z, NOURI-VASKEH M, NOROOZI GUILANDEHI S,  
460 BAGHBANZADEH A, ZAND R et al. GDF-15: Diagnostic, prognostic, and therapeutic  
461 significance in glioblastoma multiforme. *J Cell Physiol* 2021; 236: 5564-5581.  
462 <https://doi.org/10.1002/jcp.30289>

463 [43] MARTINEZ JM, SALI T, OKAZAKI R, ANNA C, HOLLINGSHEAD M et al.  
464 Drug-induced expression of nonsteroidal anti-inflammatory drug-activated  
465 gene/macrophage inhibitory cytokine-1/prostate-derived factor, a putative tumor suppressor,  
466 inhibits tumor growth. *J Pharmacol Exp Ther* 2006; 318: 899-906.  
467 <https://doi.org/10.1124/jpet.105.100081>

468 [44] LAMBERT JR, KELLY JA, SHIM M, HUFFER WE, NORDEEN SK et al. Prostate derived  
469 factor in human prostate cancer cells: gene induction by vitamin D via a p53-dependent  
470 mechanism and inhibition of prostate cancer cell growth. *J Cell Physiol* 2006; 208: 566-574.  
471 <https://doi.org/10.1002/jcp.20692>

472 [45] ALBERTONI M, SHAW PH, NOZAKI M, GODARD S, TENAN M et al. Anoxia induces  
473 macrophage inhibitory cytokine-1 (MIC-1) in glioblastoma cells independently of p53 and  
474 HIF-1. *Oncogene* 2002; 21: 4212-4219. <https://doi.org/10.1038/sj.onc.1205610>

475 [46] HULLWEGEN M, KLEINERT M, VON HAEHLING S, FISCHER A. GDF15: from  
476 biomarker to target in cancer cachexia. *Trends Cancer* 2025; 11: 1093-1105.  
477 <https://doi.org/10.1016/j.trecan.2025.06.007>

478 [47] SLOMINSKI RM, RAMAN C, CHEN JY, SLOMINSKI AT. How cancer hijacks the body's  
479 homeostasis through the neuroendocrine system. *Trends Neurosci* 2023; 46: 263-275.  
480 <https://doi.org/10.1016/j.tins.2023.01.003>

481

482 **Figure Legends**

483

484 **Figure 1.** The association between DNAm-predicted GDF-15 and all-cause mortality risk in cancer  
485 survivors A) The restricted cubic spline model shows a linear association between DNAm-predicted  
486 GDF-15 level and all-cause mortality risk. The hazard ratio (solid line) was adjusted for age, sex,  
487 race, education level, smoking status and CHD. Shaded areas represent 95% CIs. The model was  
488 conducted with 3 knots. B) Kaplan-Meier survival curves for the mortality outcome by tertiles of  
489 DNAm-predicted GDF-15. Abbreviations: DNAm-DNA methylation; CHD-coronary heart disease.

490

491 **Figure 2.** The association between DNAm-predicted GDF-15 and cancer mortality risk in cancer  
492 survivors. A) Kaplan-Meier survival curves for the cancer mortality by DNAm-predicted GDF-15  
493 tertiles. B) Cumulative incidence curves from the competing risk analysis of cancer mortality  
494 stratified by DNA-predicted GDF-15 tertiles, with non-cancer death considered as a competing risk.  
495 Abbreviation: DNAm-DNA methylation

496

497 **Figure 3.** Stratified analyses of the association between DNAm-predicted GDF-15 and all-cause  
498 mortality risk. The forest plot illustrates the Cox regression analysis of the DNAm-predicted  
499 GDF-15-mortality association stratified by subgroups, adjusting for sex, age (50-65, > 65), race,  
500 education level, smoking, and CHD, except for each stratification variable itself. Abbreviations:  
501 DNAm-DNA methylation; CHD-coronary heart disease.

502

503 **Table 1.** Characteristics of the cancer survivors classified by the DNAm-predicted GDF-15 tertiles.

| Characteristics               | Total<br>(n = 330) | Low        | Middle     | High       | p-value |
|-------------------------------|--------------------|------------|------------|------------|---------|
|                               |                    | (n=114)    | (n=114)    | (n=115)    |         |
|                               |                    | < 958      | 959-1109   | > 1110     |         |
| <b>Age, mean (SD)</b>         | 70.5 (9.7)         | 61.5 (6.5) | 71.6 (7.1) | 78.0 (6.9) | < 0.001 |
| <b>Age</b>                    |                    |            |            |            | < 0.001 |
| 50-65                         | 103 (30.0)         | 80 (70.2)  | 15 (13.2)  | 8 (7.0)    |         |
| > 65                          | 240 (70.0)         | 34 (29.8)  | 99 (86.8)  | 107 (93.0) |         |
| <b>Sex</b>                    |                    |            |            |            | 0.048   |
| male                          | 186 (54.2)         | 52 (45.6)  | 63 (55.3)  | 71 (61.7)  |         |
| Female                        | 157 (45.8)         | 62 (54.4)  | 51 (44.7)  | 44 (38.3)  |         |
| <b>Race and ethnicity</b>     |                    |            |            |            | 0.132   |
| White                         | 226 (65.9)         | 67 (58.8)  | 73 (64.0)  | 86 (74.8)  |         |
| Black                         | 47 (13.7)          | 19 (16.7)  | 16 (14.0)  | 12 (10.4)  |         |
| Mexican American              | 50 (14.6)          | 23 (20.2)  | 17 (14.9)  | 10 (8.7)   |         |
| Others                        | 20 (5.8)           | 5 (4.4)    | 8 (7.0)    | 7 (6.1)    |         |
| <b>Education level</b>        |                    |            |            |            | 0.032   |
| < high school                 | 107 (31.2)         | 29 (25.4)  | 38 (33.3)  | 40 (34.8)  |         |
| High school or equivalent     | 80 (23.3)          | 25 (21.9)  | 20 (17.5)  | 35 (30.4)  |         |
| College or above              | 156 (45.5)         | 60 (52.6)  | 56 (49.1)  | 40 (34.8)  |         |
| <b>Smoking status</b>         |                    |            |            |            | 0.091   |
| smoker                        | 214 (62.4)         | 63 (55.3)  | 79 (69.3)  | 72 (62.6)  |         |
| Non-smoker                    | 129 (37.6)         | 51 (44.7)  | 35 (30.7)  | 43 (37.4)  |         |
| <b>Coronary heart disease</b> |                    |            |            |            | 0.129   |
| Yes                           | 44 (13.0)          | 10 (8.9)   | 14 (12.4)  | 20 (17.9)  |         |
| No                            | 294 (87.0)         | 103 (91.1) | 99 (87.6)  | 92 (82.1)  |         |

504 Notes: Continuous variables: mean (SD); Categorical variables: number (95% CI)

505 Abbreviations: SD-standard deviation; CI-confidence interval

506

507 **Table 2.** Cox regression for the associations between DNAm-predicted GDF-15 and all-cause mortality.

| Models  | HR (95% CI); p-value        | Continuous | Low tertile | Middle tertile              | High tertile                | p-value trend |
|---------|-----------------------------|------------|-------------|-----------------------------|-----------------------------|---------------|
| Crude   | 1.97 (1.75, 2.22); < 0.0001 | reference  |             | 2.93 (2.02, 4.23); < 0.0001 | 6.07 (4.22, 8.74); < 0.0001 | < 0.00001     |
| Model 1 | 1.60 (1.36, 1.88); < 0.0001 | reference  |             | 1.79 (1.18, 2.73); 0.006    | 3.01 (1.90, 4.79); < 0.0001 | < 0.00001     |
| Model 2 | 1.54 (1.30, 1.83); < 0.0001 | reference  |             | 1.63 (1.06, 2.49); 0.025    | 2.66 (1.67, 4.24); < 0.0001 | 0.00002       |

508 Notes: Model 1: Adjusted for age (continuous) and sex (male or female); Model 2: Further adjusted for race, education level, smoking status and  
509 coronary heart disease.

510 Abbreviation: CI-confidence interval

511

512 **Table 3.** Cox regression for the associations between DNAm-predicted GDF-15 and long-term all-cause mortality.

| Models  | HR (95% CI); p-value        | Continuous | Low tertile                 | Middle tertile              | High tertile | p-value trend |
|---------|-----------------------------|------------|-----------------------------|-----------------------------|--------------|---------------|
| Crude   | 1.99 (1.75, 2.26); < 0.0001 | reference  | 3.25 (2.19, 4.82); < 0.0001 | 5.99 (4.07, 8.82); < 0.0001 |              | < 0.0001      |
| Model 1 | 1.64 (1.39, 1.95); < 0.0001 | reference  | 2.11 (1.36, 3.27); 0.0009   | 3.11 (1.92, 5.04); < 0.0001 |              | < 0.0001      |
| Model 2 | 1.54 (1.29, 1.84); < 0.0001 | reference  | 1.82 (1.17, 2.82); 0.0080   | 2.51 (1.55, 4.06); 0.0002   |              | 0.0002        |

513 Notes: Long-term mortality: excluded 23 subjects who died within the first two years of follow-up; Model 1: Adjusted for age (continuous) and sex  
 514 (male or female); Model 2: Further adjusted for race, education level, smoking status and coronary heart disease

515 Abbreviation: CI-confidence interval

516 **Table 4.** Cox regression for the associations between DNAm-predicted GDF-15 and cancer mortality.

| Models  | HR (95% CI); p-value       | Continuous | Low tertile              | Middle tertile              | High tertile | p-value trend |
|---------|----------------------------|------------|--------------------------|-----------------------------|--------------|---------------|
| Crude   | 1.72 (1.38, 2.15); <0.0001 | reference  | 2.99 (1.51, 5.91); 0.002 | 4.50 (2.27, 8.93); < 0.0001 |              | < 0.0001      |
| Model 1 | 1.39 (1.02, 1.90); 0.040   | reference  | 1.96 (0.90, 4.25); 0.089 | 2.39 (0.99, 5.73); 0.052    |              | 0.060         |
| Model 2 | 1.38 (1.00, 1.90); 0.052   | reference  | 1.94 (0.87, 4.31); 0.103 | 2.43 (1.00, 5.93); 0.051    |              | 0.057         |

517 Notes: Model 1: Adjusted for age (continuous) and sex (male or female); Model 2: Further adjusted for race, education level, smoking status and  
518 coronary heart disease

519 Abbreviation: CI-confidence interval

Fig. 1 [Download full resolution image](#)

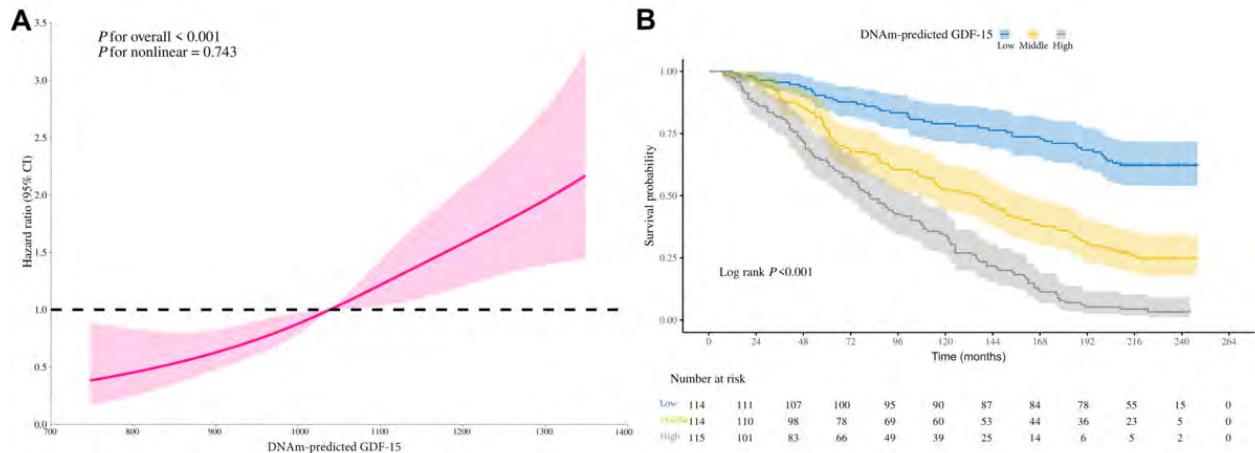



Fig. 2 [Download full resolution image](#)

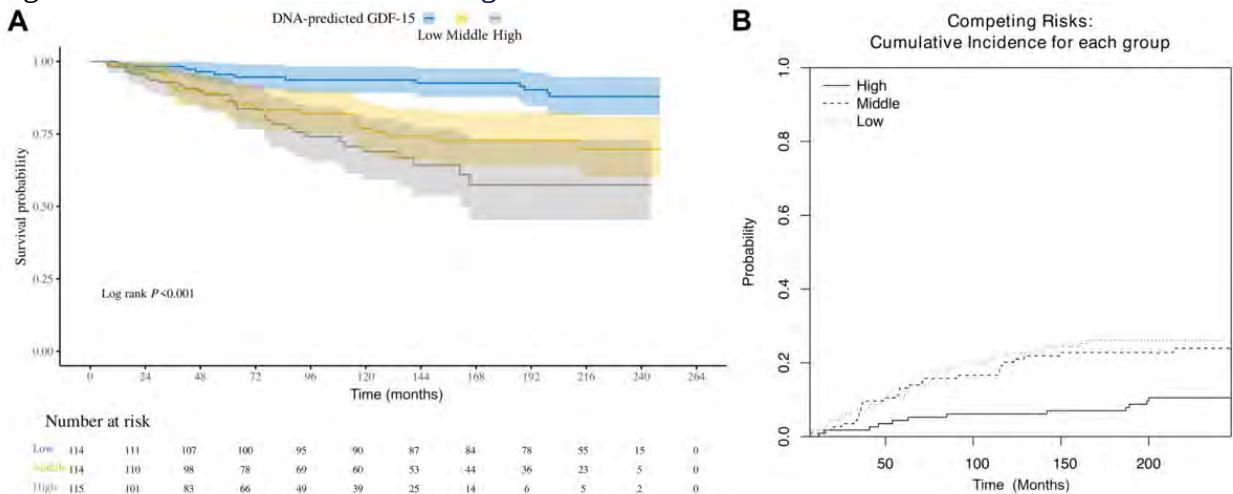
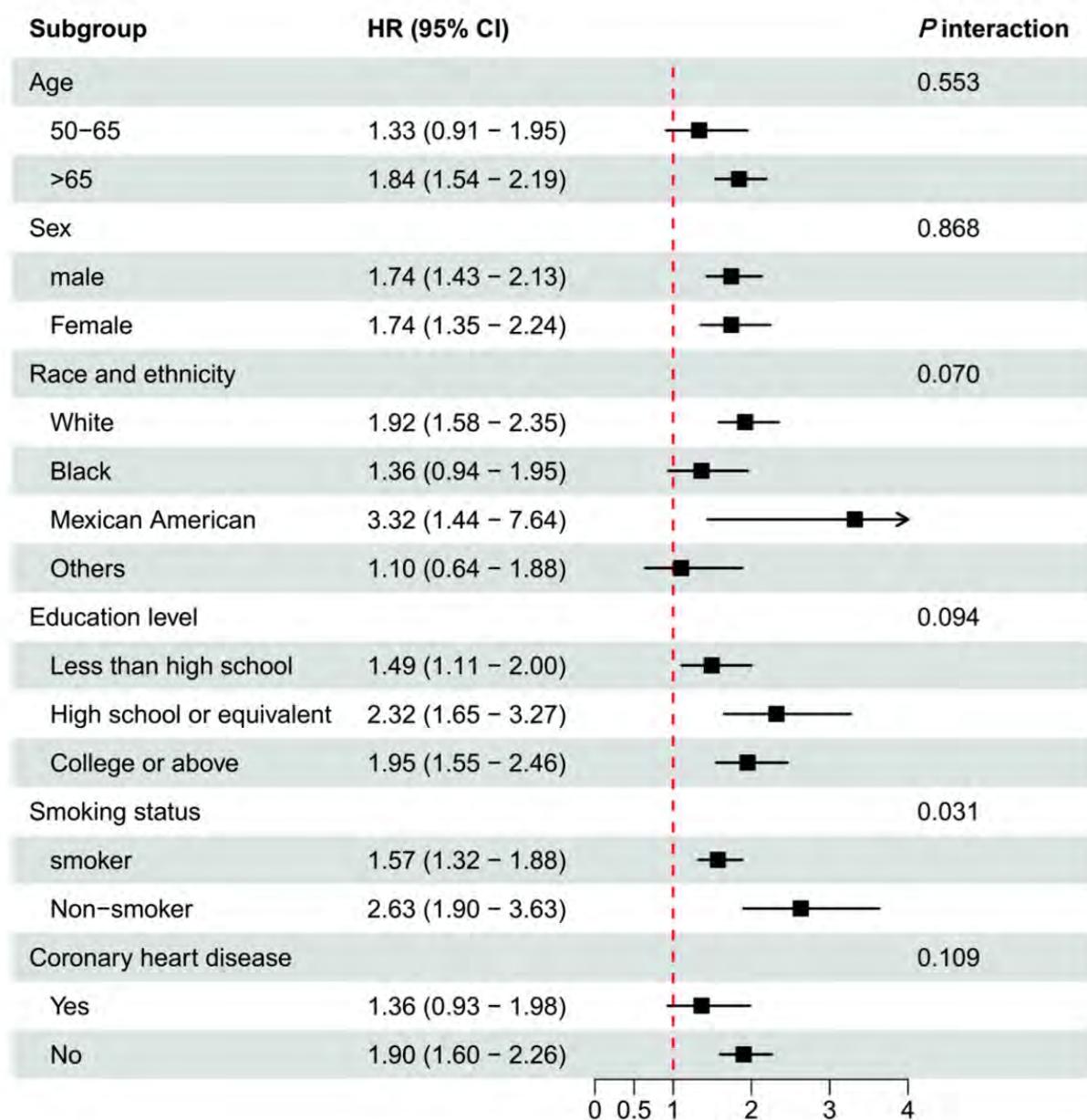




Fig. 3 [Download full resolution image](#)

