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Developing non- invasive prognostic biomarkers remains critical to improving personalized cancer 16 

care. Growth differentiation factor-15 (GDF-15), a TGF-β family cytokine, plays a key role in 17 

tumorigenesis and immune evasion. Circulating GDF-15 serves as a biomarker for cancer prognosis, 18 

and DNA methylation (DNAm)-predicted GDF-15 has been linked to mortality risk in the general 19 

population. However, the association between DNAm-predicted GDF-15 and mortality risk in 20 

cancer survivors remains unexplored. We analyzed the association between DNAm-predicted 21 

GDF-15 and all-cause, long-term all-cause, and cancer mortality risks using a cohort of 343 cancer 22 

survivors from the National Health and Nutrition Examination Survey (NHANES) 1999-2002 with 23 

a median follow-up of 138 months. Multivariable Cox regression reporting hazard ratios (HRs) and 24 

95% confidence intervals (CIs) demonstrated that each 1-standard deviation (SD) increment in 25 

DNAm-predicted GDF-15 was associated with a 60% higher all-cause mortality risk adjusted with 26 

model 1 of age and sex, and a 54% greater all-cause mortality risk in model 2 adjusted additionally 27 

for ethnicity, education, smoking, and coronary heart disease. Participants in the high GDF-15 28 

tertile showed a 201% and 166% higher mortality risk in model 1 and model 2, respectively (both p 29 

for trend < 0.0001) compared to the low tertile. Its association with long-term mortality risk remains 30 

unchanged. Stratified analyses indicated consistent relationships across multiple subgroups. 31 

Kaplan-Meier and competing risk analyses revealed a graded increase in cancer mortality risk 32 

across ascending GDF-15 tertiles; Cox models confirmed a significant positive association per 1-SD 33 

increment in the unadjusted model and model 1, which remained consistent in direction and 34 

magnitude in model 2, with a marginally significant (p = 0.052). The current study provided 35 

evidence that DNAm-predicted GDF-15, an alternative and precise estimate of GDF-15 based on 36 

DNA methylation, is positively associated with all-cause and long-term all-cause mortality risks and 37 

showed a trend of positive association with cancer mortality among cancer survivors. Future lar ger 38 

longitudinal studies with serial DNAm-predicted GDF-15 assessments are needed to verify 39 

potential causal links. 40 
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Cancer is the second leading cause of death in the United States and poses a significant public 45 

mailto:giantsand@163.com


 

2 

health challenge globally [1]. The aging and expanding population is expected to result in a nearly 46 

50% rise in new cancer cases by 2050 [2]. Although there have been advancements in 47 

multidisciplinary treatment methods in recent years, the outlook for many patients with cancer 48 

continues to be unfavorable. Identifying more accurate, straightforward, and non-invasive screening 49 

markers related to cancer prognosis holds considerable clinical importance and has the potential to 50 

enhance prognostic predictions and facilitate personalized treatment strategies. 51 

Growth differentiation factor-15 (GDF-15, also referred to as macrophage inhibitory cytokine-1, 52 

MIC-1) is a cytokine that belongs to the transforming growth factor-β (TGF-β) protein family [3]. 53 

The expression of GDF-15 is low under normal conditions except in the placenta. Its expression can 54 

be induced in response to stress conditions [4] and is reported to be abundantly produced in various 55 

cancers. It has been reported that GDF-15 plays an essential role in tumorigenesis [5-7]. In recent 56 

years, it has attracted growing interest as it has been found to interfere with antitumoral immune 57 

checkpoint blockade; neutralizing GDF-15 has shown potential for overcoming resistance and 58 

improving immunotherapy outcomes [8, 9]. Increasing evidence has demonstrated the circulating 59 

GDF-15 protein level to be an effective biomarker for early detection and prognosis in a spectrum 60 

of malignancies [10-15]. Epigenetic-related measures enable the quantification of DNA 61 

sequence-independent genomic alterations, providing a stable, long-term surrogate to circulating 62 

biomarkers [16-19]. DNA methylation (DNAm)-predicted GDF-15 was developed using DNAm 63 

levels of 137 CpGs as a surrogate of plasma level GDF-15 protein with a high correlation 64 

coefficient [20]. It has been reported to be an effective predictor for mortality risk in a general 65 

population [17]. However, the association between DNAm-predicted GDF-15 and mortality risk in 66 

cancer survivors remains unclear; in addition, the associations between DNAm-predicted GDF-15 67 

and long-term mortality and cancer mortality are lacking. 68 

We hypothesize that DNAm-predicted GDF-15 is positively associated with mortality risk in cancer 69 

individuals and investigate the relationship using a cohort of 343 cancer survivors from the 70 

NHANES dataset 1999-2002. 71 

 72 

Patients and methods 73 

Study population. This cross-sectional study utilized data from NHANES 1999-2000 and 74 

2001-2002 as the DNA methylation epigenetic biomarker data, released on July 31, 2024, were 75 
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exclusively available in these cycles in a selection of participants aged 50 years or older, and were 76 

not collected or released in any other NHANES cycles. The NHANES protocols, including 77 

experimental procedures, were approved by the National Centre for Health Statistics Research 78 

Ethics Review Board. All participants provided written informed consent without compensation, 79 

and the requirement for consent to use public data was waived. NHANES employed a complex, 80 

stratified, clustered probability design to recruit a nationally representative sample of 81 

non- institutionalized US civilians. The survey consists of two parts: interviews conducted at 82 

participants' homes and physical examinations carried out at mobile examination centers. Additional 83 

details about NHANES procedures are available at (https://www.cdc.gov/nchs/nhanes/index.htm). 84 

The study adhered to the Declaration of Helsinki principles, and its reporting was guided by the 85 

STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guideline. From 86 

the initial pool of 21,004 participants, exclusions were made for the following reasons: self-reported 87 

denial of a cancer diagnosis (N=20,494); missing DNA epigenetic marker data (N=563). No 88 

participants were excluded due to missing mortality follow-up data. The final analysis included 343 89 

cancer survivors. 90 

Ascertainment of cancer. Cancer diagnoses were self-reported and determined [21] by participants 91 

in response to the question: "Has a doctor or health professional ever diagnosed you with cancer or 92 

any malignancy?". Trained interviewers administered this assessment using the Computer-Assisted 93 

Personal Interview (CAPI) system [22], which includes built- in consistency checks to reduce data 94 

entry errors. 95 

DNAm-predicted GDF-15 measurement. DNAm-predicted GDF-15 was developed using 96 

methylation levels at 137 CpG sites, which showed high correlation with plasma GDF-15 protein 97 

levels [20]. DNA was extracted from whole blood samples collected from a randomly selected 98 

subset of NHANES participants aged 50 years or older, with storage at -80 °C. DNA methylation 99 

analysis was performed using the Illumina Infinium MethylationEPIC BeadChip v1.0 (Illumina, 100 

San Diego, CA, USA). The raw methylation data underwent preprocessing, normalization, and 101 

biomarker calculation in R (version 4.3). Detailed laboratory protocols and bioinformatics 102 

workflows are documented 103 

(https://wwwn.cdc.gov/nchs/data/nhanes/dnam/NHANES%20DNAm%20Epigenetic%20Biomarker104 

s%20Data%20Documentation.pdf). 105 



 

4 

Mortality. Mortality status and follow-up data were sourced from the publicly available National 106 

Death Index- linked mortality file. All-cause mortality was defined as death due to any reason. 107 

Cancer mortality was defined as deaths attributed to malignant neoplasms (ICD-10 codes C00-C97). 108 

Person-months of follow-up were calculated from the NHANES mobile examination center visit 109 

date until either the date of death or the end of the mortality follow-up period (December 31, 2019). 110 

Covariates. Participants were classified as smokers if they had smoked a cumulative total of 100 or 111 

more cigarettes during their lifetime; otherwise, they were categorized as non-smokers. The 112 

diagnoses of coronary heart disease (CHD), hypertension, diabetes, and chronic kidney disease 113 

were self- reported and determined according to the responses to the NHANES interview 114 

questionnaire [21, 23, 24]. Biological aging [25] was evaluated using the HorvathAge epigenetic 115 

clock [26], which was categorized into 3 tertiles (low, middle, and high). Frailty assessment used a 116 

modified version following the principle of the Modified Fried Frailty Phenotype [27]. As the 117 

NHANES 1999–2002 did not contain variables corresponding to the criterion of exhaustion, to be 118 

consistent with the conceptual framework of the original model, we included four of the five 119 

components (weakness, low physical activity, slow walking speed, and unintentional weight loss). 120 

Participants were subsequently categorized into two frailty strata for analysis: little or no 121 

(demonstrating zero to two criteria) and pronounced frailty (demonstrating three or more criteria). 122 

Statistical analysis. Baseline characteristics were reported as means and standard deviations (SD) 123 

for continuous variables and counts and percentages for categorical variables. Group differences 124 

were assessed using Student’s t-tests for continuous variables and Chi-square tests for categorical 125 

variables. DNAm-predicted GDF-15 was analyzed as a continuous measure (per 1-SD increase) or 126 

categorized into tertiles, with the low tertile as the reference. Rescrtic cubic spline and 127 

Kaplan-Meier curves were employed to demonstrate the association between DNAm-predicted 128 

GDF-15 and mortality. To mitigate potential reverse causality, the association between 129 

DNAm-predicted GDF-15 and long-term all-cause mortality was assessed by excluding participants 130 

who died within the first two years of follow-up. For the association between DNAm-predicted 131 

GDF-15 and cancer mortality, competing risk analysis using the Fine-Grey hazard model was 132 

conducted, treating deaths from non-cancer causes as competing events. To analyze the association 133 

between DNAm-predicted GDF-15 and mortality risk, we performed multivariable Cox regression, 134 

reporting hazard ratios (HRs) and 95% confidence intervals (CIs). Multivariable adjustments were 135 
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made in two models. Model 1 was adjusted for age and sex. Model 2 was further ad justed for 136 

race/ethnicity (non-Hispanic White, non-Hispanic Black, Mexican American, others), education 137 

level (< high school, high school equivalent, ≥ college), smoking status (smoker, non-smoker), and 138 

CHD. Stratified analyses were conducted by sex (male/female), age (50-65 vs. > 65 years), 139 

race/ethnicity, education level, smoking status, and CHD. Each subgroup analysis was adjusted for 140 

all covariates except the stratification variable. Potential effect modification was tested using 141 

log- likelihood ratio tests. As sensitivity analyses, stratified analyses were further employed by 142 

adjusting for hypertension, diabetes, chronic kidney disease, biological aging evaluated by 143 

HorvathAge epigenetic clock tertiles, and frailty based on model 2 to assess whether 144 

DNAm-predicted GDF-15 offers prognostic value in cancer survivors beyond its general 145 

association with aging-related mortality. All statistical analyses were performed in R (version 4.4), 146 

with statistical significance set at p-value < 0.05 (two-tailed). 147 

 148 

Results 149 

Baseline characteristics. The baseline characteristics of 343 cancer survivors are presented in 150 

Table 1. Participants in the high tertile of DNAm-predicted GDF-15 were older, less likely to be 151 

well-educated, and more likely to be male (p < 0.05). 152 

DNAm-predicted GDF-15 and mortality. A median follow-up of 138 months (range 7-248 153 

months) documented 239 all-cause deaths. Cancer survivors exhibited a positive linear association 154 

between DNAm-predicted GDF-15 levels and increased all-cause mortality risk (Figure 1A), 155 

Kaplan-Meier analysis revealed those in the low GDF-15 tertile maintained the highest survival 156 

probability throughout follow-up (log-rank p < 0.001, Figure 1B). Multivariable Cox regression 157 

demonstrated each 1-SD increment in DNAm-predicted GDF-15 conferred a 60% greater mortality 158 

risk after age and sex adjustment, which remained a 54% higher after further adjustment for 159 

race/ethnicity, education level, smoking, and CHD. Participants in the high GDF-15 tertile showed a 160 

201% and 166% increased mortality risk in model 1 and fully adjusted model, respectively (both 161 

p-values for trend < 0.0001), with the low tertile serving as reference (Table 2). 162 

After excluding 23 subjects who died within two years of follow-up, the association between 163 

DNAm-predicted GDF-15 and long-term all-cause mortality remained consistent with the primary 164 

outcome (Table 3). Multivariable Cox regression indicated that each 1-SD increase in 165 
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DNAm-predicted GDF-15 was associated with a 64% higher long-term mortality risk in model 1, 166 

with this association persisting at a 54% higher risk in model 2. For tertile comparisons, the high 167 

GDF-15 tertile had a 211% and 151% higher long-term mortality risk compared to the low tertile in 168 

models 1 and 2, respectively (both p-values for trend < 0.0001). 169 

Sixty-nine cancer deaths were documented. Kaplan-Meier analysis demonstrated significantly 170 

higher cancer mortality risk for participants in the high tertile of DNAm-predicted GDF-15 171 

compared to those in the low tertile (log-rank p < 0.001; Figure 2A). The cumulative incidence 172 

curves from the competing risk analysis showed a graded increase in the probability of cancer death 173 

across ascending GDF-15 tertiles (Figure 2B). Cox regression analyses revealed that each 1-SD 174 

increase in DNAm-predicted GDF-15 was associated significantly with a 72% and a 39% increase 175 

higher risk of cancer mortality in the unadjusted model and model 1 respectively. In model 2, the 176 

magnitude and direction of the association were consistent with those observed in model 1, with 177 

marginal significance (p=0.052). A positive but non-significant trend was observed across 178 

increasing GDF-15 levels in model 2 (p-value for trend = 0.057) when analyzed by tertiles (Table 179 

4). 180 

Stratified analyses. Stratified analyses (Figure 3) indicated that the observed association between 181 

DNAm-predicted GDF-15 and all-cause mortality was consistent across various subgroups, 182 

including age, sex, ethnicity, education level, and CHD. Smoking status showed effect modification 183 

when unadjusted for multiple comparisons. After Benjamini–Hochberg false discovery rate (FDR) 184 

correction (q=0.05), none of the variables show statistically significant effect modification. 185 

Sensitivity analyses. After further adjusting for hypertension, diabetes, chronic kidney disease, 186 

HorvathAge, and frailty based on model 2, stratified analysis showed that the association between 187 

DNAm-predicted GDF-15 and all-cause mortality remained consistent across the majority of 188 

subgroups, including cancer survivors without hypertension (1.89, 1.37-2.61), without diabetes 189 

(1.58, 1.30-1.92), without chronic kidney disease (1.62, 1.36-1.93), those with slower epigenetic 190 

aging (HorvathAge low tertile, 1.46, 1.04-2.06; middle tertile, 1.71, 1.16-2.52), and those with little 191 

or no frailty (1.61, 1.35-1.93), with most interaction terms being statistically nonsignificant except 192 

for education level and chronic kidney disease. The subgroup of chronic kidney disease should be 193 

considered as exploratory due to the small sample size (n=21) (Supplementary Table S1). 194 

 195 
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Discussion 196 

This prospective cohort study of 343 cancer survivors with a median follow-up of 138 months 197 

demonstrated that the baseline DNAm-predicted GDF-15 was significantly and positively 198 

associated with the risk of all-cause and long-term all-cause mortality. The association remained 199 

consistent in both unadjusted and fully adjusted models. Stratified analyses indicated robust 200 

relationships across multiple subgroups. A positive association was consistently observed between 201 

DNAm-predicted GDF-15 and cancer mortality. These results suggest that DNAm-predicted 202 

GDF-15 may serve as a potential prognostic biomarker for the risk of mortality in cancer 203 

individuals. 204 

Our study showed a positive association between DNAm-predicted GDF-15 and all-cause and 205 

long-term mortality in cancer individuals. Similarly, Luo and Shen reported that DNAm-predicted 206 

GDF-15 was significantly associated with all-cause mortality risks among a population of 207 

NHANES 1999-2002 without disease-based selection (N=1,912, with 267 cancer participants 208 

included) [17]. However, Luo et al. did not assess the association between DNAm-predicted 209 

GDF-15 and the risks of long-term and cancer-specific mortalities; in addition, our study was 210 

restricted to cancer survivors (N=343), which extends previous findings by validating 211 

DNAm-GDF-15 as an effective prognostic marker in a distinct high-risk group and enhances 212 

generalizability. DNAm-predicted GDF-15 was constructed using a subset of 137 CpGs that linear 213 

combination best predicted plasma GDF-15 protein level, and has been proven to be an effective 214 

surrogate measure, with a reported correlation of 0.74 and 0.53 of plasma GDF-15 protein in the 215 

training and test data, respectively [20]. The circulating DNAm-predicted GDF-15 and GDF-15 216 

protein are both related, yet distinct. Methylation patterns can vary in response to disease conditions, 217 

aging, and environmental stressors, with DNA methylation at specific CpG sites influencing gene 218 

expression. Consequently, DNAm-predicted GDF-15 may offer a more consistent and long-term 219 

assessment of physiological stress compared to plasma GDF-15 protein to some degree. Although 220 

few studies have explored the association between DNAm-predicted GDF15 and mortality, the 221 

associations between elevated circulating GDF-15 and mortality risks [28-30], metabolic 222 

dysfunctions, frailty, and biological aging [31-33] have been established across diverse patient 223 

populations and clinical settings. Our findings could partly be explained by that, as a 224 

stress-responsive cytokine, GDF-15 expression was induced by oxidative stress, inflammation, and 225 
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mitochondrial dysfunction, leading to an increase in circulating GDF-15 concentration among 226 

cancer survivors with higher mortality risk. Considering that GDF-15 is strongly associated with 227 

frailty, a state of reduced stress tolerance to external stressors [34] that may result from disease 228 

progression, and to mitigate reverse causality, where elevated DNAm-predicted GDF-15 could 229 

merely reflect frailty- induced outcomes as a consequence of the late stage of disease, we excluded 230 

participants who died within two years of follow-up. DNAm-predicted GDF-15 remained 231 

significantly associated with an increased risk of long-term mortality. Notably, stratified analyses 232 

showed consistent findings of the positive association between DNAm-predicted GDF-15 and 233 

all-cause mortality in cancer survivors without hypertension, diabetes, chronic kidney disease, with 234 

slower epigenetic aging, and those with little or no frailty, these support that the relationship 235 

between DNAm-predicted GDF-15 and mortality risk in the cancer population may involve broader 236 

mechanisms beyond merely reflecting frailty status or aging-related decline. 237 

We also found a trend of positive association between DNAm-predicted GDF-15 and cancer 238 

mortality risk, which has not been reported before. In the realm of cancer, a body of clinical 239 

literature has proven plasma GDF-15 to be an effective prognostic marker of survival in various 240 

malignancies. In a cohort of locally advanced NSCLC patients undergoing chemoradiotherapy, 241 

elevated baseline plasma GDF-15 levels demonstrated significant positive correlations with larger 242 

gross tumor volumes and independently predicted inferior relapse-free survival and overall survival 243 

in multivariate analyses [14]. A meta study showed that lung cancer patients with high GDF-15 244 

levels were strongly associated with poorer 3-year overall survival (OR 4.05, 95% CI 1.92-8.51) 245 

compared to those with low levels, supporting its role as a robust prognostic biomarker in cancer 246 

outcomes [13]. In lower-grade glioma patients from the TCGA cohort, elevated GDF-15 expression 247 

was found to be correlated with aggressive clinical features and served as an independent predictor 248 

of poor overall survival [11]. In both pancreatic ductal adenocarcinoma patients and preclinical 249 

mouse models, GDF-15 was reported to be a robust independent prognostic biomarker, with rising 250 

levels correlating to tumor burden, cachexia development, and poorer survival outcomes, suggesting 251 

its utility for early detection and risk stratification [12]. A possible explanation for the association, 252 

although the precise mechanism needs further elucidation, is that GDF-15 has protumorigenic 253 

properties. On one hand, it could mediate multiple downstream signaling cascades involved in 254 

cancer progression. These include the oncogenic pathways of PI3K/AKT and MAPK signaling, as 255 
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evidenced by phosphorylation of AKT1 and MAPK in prostate, cervical, and colorectal cancers, 256 

enhancing cell survival and therapy resistance [35, 36], epithelial-mesenchymal transition (EMT) 257 

and metastatic invasion through IGF1R and MAPK phosphorylation, facilitating tumor 258 

dissemination in breast cancer [37], and SMAD signaling in head and neck cancer and glioblastoma, 259 

sustaining cancer stem cell populations and conferring resistance to radiation therapy [38, 39]. On 260 

the other hand, GDF-15 plays a critical role in suppressing T cell migration, facilitating tumor 261 

immune evasion, creating an immunosuppressive tumor microenvironment, and leading to 262 

resistance to cancer immunotherapy [9]. Neutralizing GDF-15 has shown promising potential in 263 

sensitizing resistant tumors to the immune checkpoint inhibitors [8]. Additionally, GDF-15 has been 264 

reported to activate the hypoxia- inducible factor-1α (HIF-1α) and facilitate tumor angiogenesis [40]. 265 

However, a dual role of GDF-15 in tumorigenesis has been proposed [41, 42]. In contrast to its 266 

oncogenic property, GDF-15 could also exhibit a tumoral suppressor property, although the latter is 267 

reported much less often than the former. For example, in preclinical animal studies, the 268 

overexpression of GDF-15 in cancer cell lines, including HCT116, MCF-7, PC-3, and glioblastoma, 269 

could inhibit tumor growth [43, 44]. Moreover, the expression of GDF-15 has been shown to induce 270 

apoptosis in various cancer cells in vitro [45]. Its antitumor and protumor effects may vary 271 

depending on the type and stage of cancer [42]. In addition to its context-dependent anti- and 272 

pro-tumorigenic functions, GDF15 has been implicated in cachexia [46], a condition often viewed 273 

as a consequence of either direct tumor progression or the host's aberrant homeostatic response to 274 

cancer- induced systemic physiological alterations spanning the processes of tumor initiation and 275 

progression [47]. As our study focused on a pan-cancer population and lacked distinct cancer 276 

staging, and given the diversity of cancer types, it was not feasible to analyze the relationship for 277 

each specific cancer. In addition, it should be noted that although the observed hazard ratios for 278 

DNAm-predicted GDF-15 consistently suggested a positive trend of elevated cancer mortality risk, 279 

the 95% confidence intervals in the adjusted models were wide and included the null value at the 280 

lower bound (e.g., model 2, per 1-SD: 1.00–1.90), resulting in borderline P values (P = 0.052). The 281 

lack of definitive statistical significance is likely attributable in large part to a low 282 

event-per-variable ratio, thereby limiting the statistical power of the multivariate models. Therefore, 283 

the association between DNAm-predicted GDF-15 and cancer-specific mortality remains 284 

inconclusive and should be validated through larger cohort studies focusing on specific cancer 285 
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types. 286 

The current study has several strengths. We provide the first evidence of a positive association 287 

between DNAm-predicted GDF-15 and mortality risks among the cancer population. The use of a 288 

prospective cohort based on a non- institutional U.S cancer sample enhances generalizability. 289 

Detailed covariate data were considered as possible confounders. Our study reported a positive 290 

association between DNAm-predicted GDF-15 levels and long-term mortality, which supports the 291 

potential role of GDF-15 in predicting survival beyond its established link to frailty and mitigates 292 

concerns about reverse causality. Several limitations of the current study should be acknowledged. 293 

First, DNAm-predicted GDF-15 was measured only once, limiting insight into temporal 294 

fluctuations compared to repeated assessments. Second, although cancer diagnoses followed 295 

standardized protocols, self- reported data inherently carry risks of recall bias and misclassification 296 

without clinical verification. Third, cause-of-death information from death certificates may not 297 

always be precise. Fourth, the dataset lacked granular details on cancer types, stages, and treatment 298 

records, which could potentially influence the observed associations. Fifth, the independent 299 

association between GDF-15 and cancer mortality should be considered tentative due to the low 300 

number of cancer-specific deaths. In addition, despite our efforts to adjust for confounders, residual 301 

or unmeasured factors may still have affected the results. Finally, the current findings cannot 302 

establish causality among cancer survivors. Future larger longitudinal studies involving serial 303 

DNAm-predicted GDF-15 assessments are required. 304 

In conclusion, the current study provided preliminary evidence that DNAm-predicted GDF-15, an 305 

alternative and precise estimate of GDF-15 based on DNA methylation, is an effective predictor 306 

positively associated with all-cause and long-term all-cause mortality risks and showed a trend of 307 

positive association with cancer mortality among cancer survivors. Future larger longitudinal 308 

studies with serial DNAm-predicted GDF-15 assessments are needed to verify potential causal 309 

links. 310 
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Figure Legends 482 

 483 

Figure 1. The association between DNAm-predicted GDF-15 and all-cause mortality risk in cancer 484 

survivors A) The restricted cubic spline model shows a linear association between DNAm-predicted 485 

GDF-15 level and all-cause mortality risk. The hazard ratio (solid line) was adjusted for age, sex, 486 

race, education level, smoking status and CHD. Shaded areas represent 95% CIs. The model was 487 

conducted with 3 knots. B) Kaplan-Meier survival curves for the mortality outcome by tertiles of 488 

DNAm-predicted GDF-15. Abbreviations: DNAm-DNA methylation; CHD-coronary heart disease. 489 

 490 

Figure 2. The association between DNAm-predicted GDF-15 and cancer mortality risk in cancer 491 

survivors. A) Kaplan-Meier survival curves for the cancer mortality by DNAm-predicted GDF-15 492 

tertiles. B) Cumulative incidence curves from the competing risk analysis of cancer mortality 493 

stratified by DNA-predicted GDF-15 tertiles, with non-cancer death considered as a competing risk. 494 

Abbreviation: DNAm-DNA methylation 495 

 496 

Figure 3. Stratified analyses of the association between DNAm-predicted GDF-15 and all-cause 497 

mortality risk. The forest plot illustrates the Cox regression analysis of the DNAm-predicted 498 

GDF-15-mortality association stratified by subgroups, adjusting for sex, age (50-65, > 65), race, 499 

education level, smoking, and CHD, except for each stratification variable itself. Abbreviations: 500 

DNAm-DNA methylation; CHD-coronary heart disease. 501 

  502 
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Table 1. Characteristics of the cancer survivors classified by the DNAm-predicted GDF-15 tertiles. 503 

Characteristics Total  

(n = 330) 

Low 

(n=114) 

Middle 

(n=114) 

High 

(n=115) 

p-value 

 < 958 959-1109 > 1110 
Age, mean (SD) 70.5 (9.7) 61.5 (6.5) 71.6 (7.1) 78.0 (6.9) < 0.001 
Age     < 0.001 
50-65 103 (30.0) 80 (70.2) 15 (13.2) 8 (7.0)  
> 65 240 (70.0) 34 (29.8) 99 (86.8) 107 (93.0)  
Sex     0.048 
male 186 (54.2) 52 (45.6) 63 (55.3) 71 (61.7)  
Female 157 (45.8) 62 (54.4) 51 (44.7) 44 (38.3)  
Race and ethnicity     0.132 
White 226 (65.9) 67 (58.8) 73 (64.0) 86 (74.8)  
Black 47 (13.7) 19 (16.7) 16 (14.0) 12 (10.4) 

 
Mexican American 50 (14.6) 23 (20.2) 17 (14.9) 10 (8.7)  
Others 20 (5.8) 5 (4.4) 8 (7.0) 7 (6.1)  
Education level  

   
0.032 

< high school 107 (31.2) 29 (25.4) 38 (33.3) 40 (34.8)  
High school or 
equivalent 80 (23.3) 25 (21.9) 20 (17.5) 35 (30.4)  
College or above 156 (45.5) 60 (52.6) 56 (49.1) 40 (34.8) 

 
Smoking status 

    0.091 
smoker 214 (62.4) 63 (55.3) 79 (69.3) 72 (62.6) 

 
Non-smoker 129 (37.6) 51 (44.7) 35 (30.7) 43 (37.4) 

 
Coronary heart disease     0.129 
Yes 44 (13.0) 10 (8.9) 14 (12.4) 20 (17.9)  

No 294 (87.0) 103 (91.1) 99 (87.6) 92 (82.1)  

Notes: Continuous variables: mean (SD); Categorical variables: number (95% CI) 504 

Abbreviations: SD-standard deviation; CI-confidence interval 505 

 506 
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Table 2. Cox regression for the associations between DNAm-predicted GDF-15 and all-cause mortality. 507 

Models HR (95% CI); p-value  
Continuous Low tertile Middle tertile  High tertile  p-value trend 

Crude 1.97 (1.75, 2.22); < 0.0001 reference 2.93 (2.02, 4.23); < 0.0001 6.07 (4.22, 8.74); < 0.0001 < 0.00001 
Model 1 1.60 (1.36, 1.88); < 0.0001 reference 1.79 (1.18, 2.73); 0.006 3.01 (1.90, 4.79); < 0.0001 < 0.00001 
Model 2 1.54 (1.30, 1.83); < 0.0001 reference 1.63 (1.06, 2.49); 0.025 2.66 (1.67, 4.24); < 0.0001  0.00002 
Notes: Model 1: Adjusted for age (continuous) and sex (male or female); Model 2: Further adjusted for race, education level, smoking status and 508 

coronary heart disease. 509 

Abbreviation: CI-confidence interval 510 

  511 
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Table 3. Cox regression for the associations between DNAm-predicted GDF-15 and long-term all-cause mortality. 512 

Models HR (95% CI); p-value  
Continuous Low tertile Middle tertile  High tertile  p-value trend 

Crude 1.99 (1.75, 2.26); < 0.0001 reference 3.25 (2.19, 4.82); < 0.0001 5.99 (4.07, 8.82); <0.0001 < 0.0001 
Model 1 1.64 (1.39, 1.95); < 0.0001 reference 2.11 (1.36, 3.27); 0.0009 3.11 (1.92, 5.04); <0.0001 < 0.0001 
Model 2  1.54 (1.29, 1.84); < 0.0001 reference 1.82 (1.17, 2.82); 0.0080 2.51 (1.55, 4.06); 0.0002  0.0002 
Notes: Long-term mortality: excluded 23 subjects who died within the first two years of follow-up; Model 1: Adjusted for age (continuous) and sex 513 

(male or female); Model 2: Further adjusted for race, education level, smoking status and coronary heart disease 514 

Abbreviation: CI-confidence interval  515 
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Table 4. Cox regression for the associations between DNAm-predicted GDF-15 and cancer mortality. 516 

Models HR (95% CI); p-value  
Continuous Low tertile  Middle tertile  High tertile  p-value trend 

Crude 1.72 (1.38, 2.15); <0.0001 reference 2.99 (1.51, 5.91); 0.002 4.50 (2.27, 8.93); < 0.0001 < 0.0001 
Model 1 1.39 (1.02, 1.90); 0.040 reference 1.96 (0.90, 4.25); 0.089 2.39 (0.99, 5.73); 0.052 0.060 
Model 2 1.38 (1.00, 1.90); 0.052 reference 1.94 (0.87, 4.31); 0.103 2.43 (1.00, 5.93); 0.051  0.057 
Notes: Model 1: Adjusted for age (continuous) and sex (male or female); Model 2: Further adjusted for race, education level, smoking status and 517 

coronary heart disease 518 

Abbreviation: CI-confidence interval 519 
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