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Developing non-invasive prognostic biomarkers remains critical to improving personalized cancer
care. Growth differentiation factor-15 (GDF-15), a TGF- family cytokine, plays a key role in
tumorigenesis and immune evasion. Circulating GDF-15 serves as a biomarker for cancer prognosis,
and DNA methylation (DNAm)-predicted GDF-15 has been linked to mortality risk in the general
population. However, the association between DN Am-predicted GDF-15 and mortality risk in
cancer survivors remains unexplored. We analyzed the association between DN Am-predicted
GDF-15 and all-cause, long-term all-cause, and cancer mortality risks using a cohort of 343 cancer
survivors from the National Health and Nutrition Examination Survey (NHANES) 1999-2002 with
a median follow-up of 138 months. Multivariable Cox regression reporting hazard ratios (HRs) and
95% confidence intervals (CIs) demonstrated that each 1-standard deviation (SD) increment in
DNAm-predicted GDF-15 was associated with a 60% higher all-cause mortality risk adjusted with
model 1 of age and sex, and a 54% greater all-cause mortality risk in model 2 adjusted additionally
for ethnicity, education, smoking, and coronary heart disease. Participants in the high GDF-15
tertile showed a 201% and 166% higher mortality risk in model 1 and model 2, respectively (bothp
for trend < 0.0001) compared to the low tertile. Its association with long-term mortality risk remains
unchanged. Stratified analyses indicated consistent relationships across multiple subgroups.
Kaplan-Meier and competing risk analyses revealed a graded increase in cancer mortality risk
across ascending GDF-15 tertiles; Cox models confirmed a significant positive association per 1-SD
increment in the unadjusted model and model 1, which remained consistent in direction and
magnitude in model 2, with a marginally significant (p = 0.052). The current study provided
evidence that DNAm-predicted GDF-15, an alternative and precise estimate of GDF-15 based on
DNA methylation, is positively associated with all-cause and long-term all-cause mortality risks and
showed a trend of positive association with cancer mortality among cancer survivors. Future lar ger
longitudinal studies with serial DNAm-predicted GDF-15 assessments are needed to verify
potential causal links.
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Cancer is the second leading cause of death in the United States and poses a significant public
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health challenge globally [1]. The aging and expanding population is expected to result in a nearly
50% rise in new cancer cases by 2050 [2]. Although there have been advancements in
multidisciplinary treatment methods in recent years, the outlook for many patients with cancer
continues to be unfavorable. Identifying more accurate, straightforward, and non-invasive screening
markers related to cancer prognosis holds considerable clinical importance and has the potential to
enhance prognostic predictions and facilitate personalized treatment strategies.

Growth differentiation factor-15 (GDF-15, also referred to as macrophage inhibitory cytokine-1,
MIC-1) is a cytokine that belongs to the transforming growth factor-f (TGF-f) protein family [3].
The expression of GDF-15 is low under normal conditions except in the placenta. Its expression can
be induced in response to stress conditions [4] and is reported to be abundantly produced in various
cancers. It has been reported that GDF-15 plays an essential role in tumorigenesis [5-7]. In recent
years, it has attracted growing interest as it has been found to interfere with antitumoral immune
checkpoint blockade; neutralizing GDF-15 has shown potential for overcoming resistance and
improving immunotherapy outcomes [8, 9]. Increasing evidence has demonstrated the circulating
GDF-15 protein level to be an effective biomarker for early detection and prognosis in a spectrum
of malignancies [10-15]. Epigenetic-related measures enable the quantification of DNA
sequence-independent genomic alterations, providing a stable, long-term surrogate to circulating
biomarkers [16-19]. DNA methylation (DNAm)-predicted GDF-15 was developed using DNAm
levels of 137 CpGs as a surrogate of plasma level GDF-15 protein with a high correlation
coefficient [20]. It has been reported to be an effective predictor for mortality risk in a general
population [17]. However, the association between DNAm-predicted GDF-15 and mortality risk in
cancer survivors remains unclear; in addition, the associations between DNAm-predicted GDF-15
and long-term mortality and cancer mortality are lacking.

We hypothesize that DNAm-predicted GDF-15 is positively associated with mortality risk in cancer
individuals and investigate the relationship using a cohort of 343 cancer survivors from the

NHANES dataset 1999-2002.

Patients and methods
Study population. This cross-sectional study utilized data from NHANES 1999-2000 and
2001-2002 as the DNA methylation epigenetic biomarker data, released on July 31, 2024, were
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exclusively available in these cycles in a selection of participants aged 50 years or older, and were
not collected or released in any other NHANES cycles. The NHANES protocols, including
experimental procedures, were approved by the National Centre for Health Statistics Research
Ethics Review Board. All participants provided written informed consent without compensation,
and the requirement for consent to use public data was waived. NHANES employed a complex,
stratified, clustered probability design to recruit a nationally representative sample of
non-institutionalized US civilians. The survey consists of two parts: interviews conducted at
participants' homes and physical examinations carried out at mobile examination centers. Additional
details about NHANES procedures are available at (https://www.cdc.gov/nchs/nhanes/index. htm).
The study adhered to the Declaration of Helsinki principles, and its reporting was guided by the
STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guideline. From
the initial pool 021,004 participants, exclusions were made for the following reasons: self-reported
denial of a cancer diagnosis (N=20,494); missing DNA epigenetic marker data (N=563). No
participants were excluded due to missing mortality follow-up data. The final analysis included 343
cancer Survivors.

Ascertainment of cancer. Cancer diagnoses were self-reported and determined [21] by participants
in response to the question: "Has a doctor or health professional ever diagnosed you with cancer or
any malignancy?". Trained interviewers administered this assessment using the Computer-Assisted
Personal Interview (CAPI) system [22], which includes built-in consistency checks to reduce data
entry errors.

DNAm-predicted GDF-15 measurement. DNAm-predicted GDF-15 was developed using
methylation levels at 137 CpG sites, which showed high correlation with plasma GDF-15 protein
levels [20]. DNA was extracted from whole blood samples collected from a randomly selected
subset of NHANES participants aged 50 years or older, with storage at -80 °C. DNA methylation
analysis was performed using the Illumina Infinium MethylationEPIC BeadChip v1.0 (Illumina,
San Diego, CA, USA). The raw methylation data underwent preprocessing, normalization, and
biomarker calculation in R (version 4.3). Detailed laboratory protocols and bioinformatics
work flows are documented
(https://wwwn.cdc. gov/nchs/data/nhanes/dnam/NHANES%20DNAmM%20Epigenetic%20Biomarker

s%20Data%20Documentation.pdf).



106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135

Mortality. Mortality status and follow-up data were sourced from the publicly available National
Death Index-linked mortality file. All-cause mortality was defined as death due to any reason.
Cancer mortality was defined as deaths attributed to malignant neoplasms (ICD-10 codes C00-C97).
Person-months of follow-up were calculated from the NHANES mobile examination center visit
date until either the date of death or the end of the mortality follow-up period (December 31, 2019).
Covariates. Participants were classified as smokers if they had smoked a cumulative total of 100 or
more cigarettes during their lifetime; otherwise, they were categorized as non-smokers. The
diagnoses of coronary heart disease (CHD), hypertension, diabetes, and chronic kidney disease
were self-reported and determined according to the responses to the NHANES interview
questionnaire [21, 23, 24]. Biological aging [25] was evaluated using the HorvathAge epigenetic
clock [26], which was categorized into 3 tertiles (low, middle, and high). Frailty assessment used a
modified version following the principle of the Modified Fried Frailty Phenotype [27]. As the
NHANES 1999-2002 did not contain variables corresponding to the criterion of exhaustion, to be
consistent with the conceptual framework of the original model, we included four of the five
components (weakness, low physical activity, slow walking speed, and unintentional weight loss).
Participants were subsequently categorized into two frailty strata for analysis: little or no
(demonstrating zero to two criteria) and pronounced frailty (demonstrating three or more criteria).
Statistical analysis. Baseline characteristics were reported as means and standard deviations (SD)
for continuous variables and counts and percentages for categorical variables. Group differences
were assessed using Student’s t-tests for continuous variables and Chi-square tests for categorical
variables. DNAm-predicted GDF-15 was analyzed as a continuous measure (per 1-SD increase) or
categorized into tertiles, with the low tertile as the reference. Rescrtic cubic spline and
Kaplan-Meier curves were employed to demonstrate the association between DN Am-predicted
GDF-15 and mortality. To mitigate potential reverse causality, the association between
DNAm-predicted GDF-15 and long-term all-cause mortality was assessed by excluding participants
who died within the first two years of follow-up. For the association between DN Am-predicted
GDF-15 and cancer mortality, competing risk analysis using the Fine-Grey hazard model was
conducted, treating deaths from non-cancer causes as competing events. To analyze the association
between DNAm-predicted GDF-15 and mortality risk, we performed multivariable Cox regression,

reporting hazard ratios (HRs) and 95% confidence intervals (Cls). Multivariable adjustments were
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made in two models. Model 1 was adjusted for age and sex. Model 2 was further adjusted for
race/ethnicity (non-Hispanic White, non-Hispanic Black, Mexican American, others), education
level (< high school, high school equivalent, > college), smoking status (smoker, non-smoker), and
CHD. Stratified analyses were conducted by sex (male/female), age (50-65 vs. > 65 years),
race/ethnicity, education level, smoking status, and CHD. Each subgroup analysis was adjusted for
all covariates except the stratification variable. Potential effect modification was tested using
log-likelihood ratio tests. As sensitivity analyses, stratified analyses were further employed by
adjusting for hypertension, diabetes, chronic kidney disease, biological aging evaluated by
HorvathAge epigenetic clock tertiles, and frailty based on model 2 ‘to assess whether
DNAm-predicted GDF-15 offers prognostic value in cancer survivors beyond its general
association with aging-related mortality. All statistical analyses were performed in R (version 4.4),

with statistical significance set at p-value < 0.05 (two-tailed).

Results

Baseline characteristics. The baseline characteristics of 343 cancer survivors are presented in
Table 1. Participants in the high tertile of DNAm-predicted GDF-15 were older, less likely to be
well-educated, and more likely to be male (p <0.05).

DNAm-predicted GDF-15 and mortality. A median follow-up of 138 months (range 7-248
months) documented 239 all-cause deaths. Cancer survivors exhibited a positive linear association
between DNAm-predicted GDF-15 levels and increased all-cause mortality risk (Figure 1A),
Kaplan-Meier analysis revealed those in the low GDF-15 tertile maintained the highest survival
probability throughout follow-up (log-rank p < 0.001, Figure 1B). Multivariable Cox regression
demonstrated each 1-SD increment in DN Am-predicted GDF-15 conferred a 60% greater mortality
risk after age and sex adjustment, which remained a 54% higher after further adjustment for
race/ethnicity, education level, smoking, and CHD. Participants in the high GDF-15 tertile showed a
201% and 166% increased mortality risk in model 1 and fully adjusted model, respectively (both
p-values for trend < 0.0001), with the low tertile serving as reference (Table 2).

After excluding 23 subjects who died within two years of follow-up, the association between
DNAm-predicted GDF-15 and long-term all-cause mortality remained consistent with the primary

outcome (Table 3). Multivariable Cox regression indicated that each 1-SD increase in
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DNAm-predicted GDF-15 was associated with a 64% higher long-term mortality risk in model 1,
with this association persisting at a 54% higher risk in model 2. For tertile comparisons, the high
GDF-15 tertile had a 211% and 151% higher long-term mortality risk compared to the low tertile in
models 1 and 2, respectively (both p-values for trend < 0.0001).

Sixty-nine cancer deaths were documented. Kaplan-Meier analysis demonstrated significantly
higher cancer mortality risk for participants in the high tertile of DNAm-predicted GDF-15
compared to those in the low tertile (log-rank p < 0.001; Figure 2A). The cumulative incidence
curves from the competing risk analysis showed a graded increase in the probability of cancer death
across ascending GDF-15 tertiles (Figure 2B). Cox regression analyses revealed that each 1-SD
increase in DN Am-predicted GDF-15 was associated significantly with a 72% and a 39% increase
higher risk of cancer mortality in the unadjusted model and model 1 respectively. In model 2, the
magnitude and direction of the association were consistent with those observed in model 1, with
marginal significance (p=0.052). A positive but non-significant trend was observed across
increasing GDF-15 levels in model 2 (p-value for trend = 0.057) when analyzed by tertiles (Table
4).

Stratified analyses. Stratified analyses (Figure 3) indicated that the observed association between
DNAm-predicted GDF-15 and all-cause mortality was consistent across various subgroups,
including age, sex, ethnicity, education level, and CHD. Smoking status showed effect modification
when unadjusted for multiple comparisons. After Benjamini—-Hochberg false discovery rate (FDR)
correction (q=0.05), none of the variables show statistically significant effect modification.
Sensitivity analyses. After further adjusting for hypertension, diabetes, chronic kidney disease,
HorvathAge, and frailty based on model 2, stratified analysis showed that the association between
DNAm-predicted GDF-15 and all-cause mortality remained consistent across the majority of
subgroups, including cancer survivors without hypertension (1.89, 1.37-2.61), without diabetes
(1.58, 1.30-1.92), without chronic kidney disease (1.62, 1.36-1.93), those with slower epigenetic
aging (HorvathAge low tertile, 1.46, 1.04-2.06; middle tertile, 1.71, 1.16-2.52), and those with little
or no frailty (1.61, 1.35-1.93), with most interaction terms being statistically nonsignificant except
for education level and chronic kidney disease. The subgroup of chronic kidney disease should be

considered as exploratory due to the small sample size (n=21) (Supplementary Table S1).
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Discussion

This prospective cohort study of 343 cancer survivors with a median follow-up of 138 months
demonstrated that the baseline DNAm-predicted GDF-15 was significantly and positively
associated with the risk of all-cause and long-term all-cause mortality. The association remained
consistent in both unadjusted and fully adjusted models. Stratified analyses indicated robust
relationships across multiple subgroups. A positive association was consistently observed between
DNAm-predicted GDF-15 and cancer mortality. These results suggest that DN Am-predicted
GDF-15 may serve as a potential prognostic biomarker for the risk of mortality in cancer
individuals.

Our study showed a positive association between DNAm-predicted GDF-15 and all-cause and
long-term mortality in cancer individuals. Similarly, Luo and Shen reported that DN Am-predicted
GDF-15 was significantly associated with all-cause mortality risks among a population of
NHANES 1999-2002 without disease-based selection (N=1,912, with 267 cancer participants
included) [17]. However, Luo et al did not assess the association between DN Am-predicted
GDF-15 and the risks of long-term and cancer-specific mortalities; in addition, our study was
restricted to cancer survivors (N=343), which extends previous findings by validating
DNAm-GDF-15 as an effective prognostic marker in a distinct high-risk group and enhances
generalizability. DNAm-predicted GDF-15 was constructed using a subset of 137 CpGs that linear
combination best predicted plasma GDF-15 protein level, and has been proven to be an effective
surrogate measure, with a reported correlation of 0.74 and 0.53 of plasma GDF-15 protein in the
training and test data, respectively [20]. The circulating DN Am-predicted GDF-15 and GDF-15
protein are both related, yet distinct. Methylation patterns can vary in response to disease conditions,
aging, and environmental stressors, with DNA methylation at specific CpG sites influencing gene
expression. Consequently, DNAm-predicted GDF-15 may offer a more consistent and long-term
assessment of physiological stress compared to plasma GDF-15 protein to some degree. Although
few studies have explored the association between DNAm-predicted GDF15 and mortality, the
associations between elevated circulating GDF-15 and mortality risks [28-30], metabolic
dysfunctions, frailty, and biological aging [31-33] have been established across diverse patient
populations and clinical settings. Our findings could partly be explained by that, as a

stress-responsive cytokine, GDF-15 expression was induced by oxidative stress, inflammation, and
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mitochondrial dysfunction, leading to an increase in circulating GDF-15 concentration among
cancer survivors with higher mortality risk. Considering that GDF-15 is strongly associated with
frailty, a state of reduced stress tolerance to external stressors [34] that may result from disease
progression, and to mitigate reverse causality, where elevated DNAm-predicted GDF-15 could
merely reflect frailty-induced outcomes as a consequence of the late stage of disease, we excluded
participants who died within two years of follow-up. DNAm-predicted GDF-15 remained
significantly associated with an increased risk of long-term mortality. Notably, stratified analyses
showed consistent findings of the positive association between DNAm-predicted GDF-15 and
all-cause mortality in cancer survivors without hypertension, diabetes, chronic kidney disease, with
slower epigenetic aging, and those with little or no frailty, these support that the relationship
between DNAm-predicted GDF-15 and mortality risk in the cancer population may involve broader
mechanisms beyond merely reflecting frailty status or aging-related decline.

We also found a trend of positive association between DNAm-predicted GDF-15 and cancer
mortality risk, which has not been reported before. In the realm of cancer, a body of clinical
literature has proven plasma GDF-15 to be an effective prognostic marker of survival in various
malignancies. In a cohort of locally advanced NSCLC patients undergoing chemoradiotherapy,
elevated baseline plasma GDF-15 levels demonstrated significant positive correlations with larger
gross tumor volumes and independently predicted inferior relapse- free survival and overall survival
in multivariate analyses [14]. A meta study showed that lung cancer patients with high GDF-15
levels were strongly associated with poorer 3-year overall survival (OR 4.05, 95% CI 1.92-8.51)
compared to those with low levels, supporting its role as a robust prognostic biomarker in cancer
outcomes [13]. In lower-grade glioma patients from the TC GA cohort, elevated GDF-15 expression
was found to be correlated with aggressive clinical features and served as an independent predictor
of poor overall survival [11]. In both pancreatic ductal adenocarcinoma patients and preclinical
mouse models, GDF-15 was reported to be a robust independent prognostic biomarker, with rising
levels correlating to tumor burden, cachexia development, and poorer survival outcomes, suggesting
its utility for early detection and risk stratification [12]. A possible explanation for the association,
although the precise mechanism needs further elucidation, is that GDF-15 has protumorigenic
properties. On one hand, it could mediate multiple downstream signaling cascades involved in

cancer progression. These include the oncogenic pathways of PI3K/AKT and MAPK signaling, as
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evidenced by phosphorylation of AKT1 and MAPK in prostate, cervical, and colorectal cancers,
enhancing cell survival and therapy resistance [35, 36], epithelial-mesenchymal transition (EMT)
and metastatic invasion through IGFIR and MAPK phosphorylation, facilitating tumor
dissemination in breast cancer [37], and SMAD signaling in head and neck cancer and glioblastoma,
sustaining cancer stem cell populations and conferring resistance to radiation therapy [38, 39]. On
the other hand, GDF-15 plays a critical role in suppressing T cell migration, facilitating tumor
immune evasion, creating an immunosuppressive tumor microenvironment, and leading to
resistance to cancer immunotherapy [9]. Neutralizing GDF-15 has shown promising potential in
sensitizing resistant tumors to the immune checkpoint inhibitors [8]. Additionally, GDF-15 has been
reported to activate the hypoxia-inducible factor-1a (HIF-1a) and facilitate tumor angiogenesis [40].
However, a dual role of GDF-15 in tumorigenesis has been proposed [41, 42]. In contrast to its
oncogenic property, GDF-15 could also exhibit a tumoral suppressor property, although the latter is
reported much less often than the former. For example, in preclinical animal studies, the
overexpression of GDF-15 in cancer cell lines, including HCT116, MCF-7, PC-3, and glioblastoma,
could inhibit tumor growth [43, 44]. Moreover, the expression of GDF-15 has been shown to induce
apoptosis in various cancer cells in vitro [45]. Its antitumor and protumor effects may vary
depending on the type and stage of cancer [42]. In addition to its context-dependent anti- and
pro-tumorigenic functions, GDF15 has been implicated in cachexia [46], a condition often viewed
as a consequence of either direct tumor progression or the host's aberrant homeostatic response to
cancer-induced systemic physiological alterations spanning the processes of tumor initiation and
progression [47]. As our study focused on a pan-cancer population and lacked distinct cancer
staging, and given the diversity of cancer types, it was not feasible to analyze the relationship for
each specific cancer. In addition, it should be noted that although the observed hazard ratios for
DNAm-predicted GDF-15 consistently suggested a positive trend of elevated cancer mortality risk,
the 95% confidence intervals in the adjusted models were wide and included the null value at the
lower bound (e.g., model 2, per 1-SD: 1.00—-1.90), resulting in borderline P values (P = 0.052). The
lack of definitive statistical significance is likely attributable in large part to a low
event-per-variable ratio, thereby limiting the statistical power of the multivariate models. Therefore,
the association between DNAm-predicted GDF-15 and cancer-specific mortality remains

inconclusive and should be validated through larger cohort studies focusing on specific cancer
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types.

The current study has several strengths. We provide the first evidence of a positive association
between DNAm-predicted GDF-15 and mortality risks among the cancer population. The use of a
prospective cohort based on a non-institutional U.S cancer sample enhances generalizability.
Detailed covariate data were considered as possible confounders. Our study reported a positive
association between DNAm-predicted GDF-15 levels and long-term mortality, which supports the
potential role of GDF-15 in predicting survival beyond its established link to frailty and mitigates
concerns about reverse causality. Several limitations of the current study should be acknowledged.
First, DNAm-predicted GDF-15 was measured only once, limiting insight into temporal
fluctuations compared to repeated assessments. Second, although cancer diagnoses followed
standardized protocols, self-reported data inherently carry risks of recall bias and misclassification
without clinical verification. Third, cause-of-death information from death certificates may not
always be precise. Fourth, the dataset lacked granular details on cancer types, stages, and treatment
records, which could potentially influence the observed associations. Fifth, the independent
association between GDF-15 and cancer mortality should be considered tentative due to the low
number of cancer-specific deaths. In addition, despite our efforts to adjust for confounders, residual
or unmeasured factors may still have affected the results. Finally, the current findings cannot
establish causality among cancer survivors. Future larger longitudinal studies involving serial
DNAm-predicted GDF-15 assessments are required.

In conclusion, the current study provided preliminary evidence that DNAm-predicted GDF-15, an
alternative and precise estimate of GDF-15 based on DNA methylation, is an effective predictor
positively associated with all-cause and long-term all-cause mortality risks and showed a trend of
positive association with cancer mortality among cancer survivors. Future larger longitudinal
studies with serial DNAm-predicted GDF-15 assessments are needed to verify potential causal

links.
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Figure Legends

Figure 1. The association between DNAm-predicted GDF-15 and all-cause mortality risk in cancer
survivors A) The restricted cubic spline model shows a linear association between DN Am-predicted
GDF-15 level and all-cause mortality risk. The hazard ratio (solid line) was adjusted for age, sex,
race, education level, smoking status and CHD. Shaded areas represent 95% CIs. The model was
conducted with 3 knots. B) Kaplan-Meier survival curves for the mortality outcome by tertiles of

DNAm-predicted GDF-15. Abbreviations: DNAm-DNA methylation;, CHD-coronary heart disease.

Figure 2. The association between DNAm-predicted GDF-15 and cancer mortality risk in cancer
survivors. A) Kaplan-Meier survival curves for the cancer mortality by DNAm-predicted GDF-15
tertiles. B) Cumulative incidence curves from the competing risk analysis of cancer mortality
stratified by DNA-predicted GDF-15 tertiles, with non-cancer death considered as a competing risk.

Abbreviation: DNAm-DNA methylation

Figure 3. Stratified analyses of the association between DNAm-predicted GDF-15 and all-cause
mortality risk. The forest plot illustrates the Cox regression analysis of the DN Am-predicted
GDF-15-mortality association stratified by subgroups, adjusting for sex, age (50-65, > 65), race,
education level, smoking, and CHD, except for each stratification variable itself. Abbreviations:

DNAm-DNA methylation; CHD-coronary heart disease.
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Table 1. Characteristics of the cancer survivors classified by the DNAm-predicted GDF-15 tertiles.

Characteristics Total Low Middle High p-value
(n = 330) (n=114) (n=114) (n=115)

<958 959-1109 > 1110
Age, mean (SD) 70.5 (9.7) 61.5(6.5) 71.6(7.1) 78.0(6.9) <0.001
Age <0.001
50-65 103 (30.0) 80(70.2) 15(13.2) 8(7.0)
> 65 240 (70.0) 34(29.8) 99 (86.8) 107 (93.0)
Sex 0.048
male 186 (54.2) 52 (45.6)  63(55.3) 71(61.7)
Female 157 (45.8) 62 (54.4) 51 (44.7) 44 (38.3)
Race and ethnicity 0.132
White 226 (65.9) 67 (58.8) 73 (64.0) 86 (74.8)
Black 47 (13.7) 19(16.7) 16 (14.0) 12(10.4)
Mexican American 50 (14.6) 23(20.2) 17(14.9) 10(8.7)
Others 20 (5.8) 5(4.4) 8 (7.0) 7 (6.1)
Education level 0.032
< high school 107 (31.2) 29 (254)  38(33.3) 40 (34.8)
Egigalem school o g5 233 2521.9)  20(17.5) 35 (30.4)
College or above 156 (45.5) 60 (52.6)  56(49.1) 40 (34.8)
Smoking status 0.091
smoker 214 (62.4) 63(55.3)  79(69.3) 72 (62.6)
Non-smoker 129 (37.6) 51(44.7)  35(30.7) 43(37.4)
Coronary heart disease 0.129
Yes 44 (13.0) 10 (8.9) 14 (12.4)  20(17.9)
No 294 (87.0) 103 (91.1) 99 (87.6) 92 (82.1)

Notes: Continuous variables: mean (SD); Categorical variables: number (95% CI)

Abbreviations: SD-standard deviation; CI-confidence interval
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Table 2. Cox regression for the associations between DNAm-predicted GDF-15 and all-cause mortality.

Models HR (95% CI); p-value

Continuous Low tertile Middle tertile High tertile p-value trend
Crude 1.97 (1.75,2.22); <0.0001  reference 2.93(2.02,4.23); <0.0001  6.07 (4.22, 8.74); <0.0001 <0.00001
Model 1 1.60 (1.36, 1.88); <0.0001 reference 1.79 (1.18, 2.73); 0.006 3.01 (1.90,4.79); < 0.0001 <0.00001
Model 2 1.54 (1.30, 1.83); <0.0001 reference 1.63 (1.06, 2.49); 0.025 2.66 (1.67, 4.24); < 0.0001 0.00002

Notes: Model 1: Adjusted for age (continuous) and sex (male or female); Model 2: Further adjusted for race, education level, smoking status and
coronary heart disease.
Abbreviation: Cl-confidence interval
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Table 3. Cox regression for the associations between DN Am-predicted GDF-15 and long-term all-cause mortality.
Models HR (95% CI); p-value

Continuous Low tertile Middle tertile High tertile p-value trend
Crude 1.99 (1.75,2.26); <0.0001  reference 3.25(2.19, 4.82); <0.0001 5.99 (4.07, 8.82); <0.0001 - <0.0001
Model 1 1.64 (1.39, 1.95); <0.0001  reference 2.11 (1.36, 3.27); 0.0009 3.11 (1.92, 5.04); <0.0001 < 0.0001
Model 2 1.54 (1.29, 1.84); <0.0001 reference 1.82 (1.17, 2.82); 0.0080 2.51 (1.55,4.06); 0.0002 0.0002

Notes: Long-term mortality: excluded 23 subjects who died within the first two years of follow-up; Model 1: Adjusted for age (continuous) and sex
(male or female); Model 2: Further adjusted for race, education level, smoking status and coronary heart disease
Abbreviation: Cl-confidence interval
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Table 4. Cox regression for the associations between DNAm-predicted GDF-15 and cancer mortality.

Models HR (95% CI); p-value

Continuous Low tertile Middle tertile High tertile p-value trend
Crude 1.72 (1.38, 2.15); <0.0001  reference 299 (1.51,5.91); 0.002  4.50(2.27,8.93); <0.0001  <0.0001
Model 1 1.39 (1.02, 1.90); 0.040 reference 1.96 (0.90, 4.25); 0.089  2.39(0.99, 5.73); 0.052 0.060
Model 2 1.38 (1.00, 1.90); 0.052 reference 1.94 (0.87,4.31); 0.103  2.43 (1.00, 5.93); 0.051 0.057

Notes: Model 1: Adjusted for age (continuous) and sex (male or female); Model 2: Further adjusted for race, education level, smoking status and
coronary heart disease
Abbreviation: Cl-confidence interval
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