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Developing non-invasive prognostic biomarkers remains critical to improving personalized cancer care. Growth differ-
entiation factor-15 (GDF-15), a TGF-p family cytokine, plays a key role in tumorigenesis and immune evasion. Circulating
GDEF-15 serves as a biomarker for cancer prognosis, and DNA methylation (DNAm)-predicted GDF-15 has been linked to
mortality risk in the general population. However, the association between DNAm-predicted GDF-15 and mortality risk in
cancer survivors remains unexplored. We analyzed the association between DNAm-predicted GDF-15 and all-cause, long-
term all-cause, and cancer mortality risks using a cohort of 343 cancer survivors from the National Health and Nutrition
Examination Survey (NHANES) 1999-2002 with a median follow-up of 138 months. Multivariable Cox regression reporting
hazard ratios (HRs) and 95% confidence intervals (CIs) demonstrated that each 1-standard deviation (SD) increment in
DNAm-predicted GDF-15 was associated with a 60% higher all-cause mortality risk adjusted with model 1 of age and sex,
and a 54% greater all-cause mortality risk in model 2 adjusted additionally for ethnicity, education, smoking, and coronary
heart disease. Participants in the high GDF-15 tertile showed a 201% and 166% higher mortality risk in model 1 and model
2, respectively (both p for trend <0.0001) compared to the low tertile. Its association with long-term mortality risk remains
unchanged. Stratified analyses indicated consistent relationships across multiple subgroups. Kaplan-Meier and competing
risk analyses revealed a graded increase in cancer mortality risk across ascending GDF-15 tertiles; Cox models confirmed
a significant positive association per 1-SD increment in the unadjusted model and model 1, which remained consistent in
direction and magnitude in model 2, with a marginally significant (p=0.052). The current study provided evidence that
DNAm-predicted GDF-15, an alternative and precise estimate of GDF-15 based on DNA methylation, is positively associ-
ated with all-cause and long-term all-cause mortality risks and showed a trend of positive association with cancer mortality
among cancer survivors. Future larger longitudinal studies with serial DNAm-predicted GDF-15 assessments are needed to
verify potential causal links.
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Cancer is the second leading cause of death in the United
States and poses a significant public health challenge globally
[1]. The aging and expanding population is expected to
result in a nearly 50% rise in new cancer cases by 2050
[2]. Although there have been advancements in multidis-
ciplinary treatment methods in recent years, the outlook
for many patients with cancer continues to be unfavorable.
Identifying more accurate, straightforward, and non-invasive
screening markers related to cancer prognosis holds consid-
erable clinical importance and has the potential to enhance
prognostic predictions and facilitate personalized treatment
strategies.

Growth differentiation factor-15 (GDF-15, also referred to
as macrophage inhibitory cytokine-1, MIC-1) is a cytokine
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that belongs to the transforming growth factor-p (TGF-f)
protein family [3]. The expression of GDF-15 is low under
normal conditions except in the placenta. Its expression can
be induced in response to stress conditions [4] and is reported
to be abundantly produced in various types of cancer. It has
been reported that GDF-15 plays an essential role in tumori-
genesis [5-7]. In recent years, it has attracted growing interest
as it has been found to interfere with antitumoral immune
checkpoint blockade; neutralizing GDF-15 has shown poten-
tial for overcoming resistance and improving immunotherapy
outcomes [8, 9]. Increasing evidence has demonstrated that
the circulating GDF-15 protein level is an effective biomarker
for early detection and prognosis in a spectrum of malignan-
cies [10-15]. Epigenetic-related measures enable the quanti-
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fication of DNA sequence-independent genomic altera-
tions, providing a stable, long-term surrogate to circulating
biomarkers [16-19]. DNA methylation (DNAm)-predicted
GDE-15 was developed using DNAm levels of 137 CpGs as a
surrogate of plasma level GDF-15 protein with a high corre-
lation coefficient [20]. It has been reported to be an effec-
tive predictor of mortality risk in a general population [17].
However, the association between DNAm-predicted GDF-15
and mortality risk in cancer survivors remains unclear;
in addition, the associations between DNAm-predicted
GDF-15 and long-term mortality and cancer mortality are
lacking.

We hypothesize that DNAm-predicted GDEF-15 is
positively associated with mortality risk in cancer individuals
and investigate the relationship using a cohort of 343 cancer
survivors from the NHANES dataset 1999-2002.

Patients and methods

Study population. This cross-sectional study utilized
data from NHANES 1999-2000 and 2001-2002 as the DNA
methylation epigenetic biomarker data, released on July 31,
2024, were exclusively available in these cycles in a selection
of participants aged 50 years or older, and were not collected
or released in any other NHANES cycles. The NHANES
protocols, including experimental procedures, were approved
by the National Center for Health Statistics Research Ethics
Review Board. All participants provided written informed
consent without compensation, and the requirement for
consent to use public data was waived. NHANES employed
a complex, stratified, clustered probability design to recruit
a nationally representative sample of non-institutionalized
US civilians. The survey consists of two parts: interviews
conducted at participants’ homes and physical examina-
tions carried out at mobile examination centers. Additional
details about NHANES procedures are available at (https://
www.cdc.gov/nchs/nhanes/index.htm). The study adhered
to the Declaration of Helsinki principles, and its reporting
was guided by the STROBE (Strengthening the Reporting
of Observational Studies in Epidemiology) guidelines. From
the initial pool of 21,004 participants, exclusions were made
for the following reasons: self-reported denial of a cancer
diagnosis (n=20,494); missing DNA epigenetic marker data
(n=563). No participants were excluded due to missing
mortality follow-up data. The final analysis included 343
cancer survivors.

Ascertainment of cancer. Cancer diagnoses were self-
reported and determined [21] by participants in response
to the question: “Has a doctor or health professional ever
diagnosed you with cancer or any malignancy?” Trained
interviewers administered this assessment using the
Computer-Assisted Personal Interview (CAPI) system [22],
which includes built-in consistency checks to reduce data
entry errors.

DNAm-predicted GDF-15 measurement. DNAm-
predicted GDF-15 was developed using methylation levels at
137 CpG sites, which showed high correlation with plasma
GDF-15 protein levels [20]. DNA was extracted from whole
blood samples collected from a randomly selected subset of
NHANES participants aged 50 years or older, with storage
at —80°C. DNA methylation analysis was performed using
the IMlumina Infinjum MethylationEPIC BeadChip v1.0
(Illumina, San Diego, CA, USA). The raw methylation data
underwent preprocessing, normalization, and biomarker
calculation in R (version 4.3). Detailed laboratory proto-
cols and bioinformatics workflows are documented (https://
wwwn.cdc.gov/nchs/data/nhanes/dnam/NHANES%20
DNAm%20Epigenetic%20Biomarkers%20Data%20
Documentation.pdf).

Mortality. Mortality status and follow-up data were
sourced from the publicly available National Death Index-
linked mortality file. All-cause mortality was defined as
death due to any reason. Cancer mortality was defined as
deaths attributed to malignant neoplasms (ICD-10 codes
C00-C97). Person-months of follow-up were calculated from
the NHANES mobile examination center visit date until
either the date of death or the end of the mortality follow-up
period (December 31, 2019).

Covariates. Participants were classified as smokers if they
had smoked a cumulative total of 100 or more cigarettes
during their lifetime; otherwise, they were categorized as
non-smokers. The diagnoses of coronary heart disease
(CHD), hypertension, diabetes, and chronic kidney disease
were self-reported and determined according to the responses
to the NHANES interview questionnaire [21, 23, 24]. Biolog-
ical aging [25] was evaluated using the HorvathAge epigen-
etic clock [26], which was categorized into three tertiles
(low, middle, and high). Frailty assessment used a modified
version following the principle of the Modified Fried Frailty
Phenotype [27]. As the NHANES 1999-2002 did not contain
variables corresponding to the criterion of exhaustion, to be
consistent with the conceptual framework of the original
model, we included four of the five components (weakness,
low physical activity, slow walking speed, and unintentional
weight loss). Participants were subsequently categorized into
two frailty strata for analysis: little or no (demonstrating zero
to two criteria) and pronounced frailty (demonstrating three
or more criteria).

Statistical analysis. Baseline characteristics were
reported as means and standard deviations (SD) for contin-
uous variables and counts and percentages for categorical
variables. Group differences were assessed using Student’s
t-tests for continuous variables and Chi-square tests for
categorical variables. DNAm-predicted GDEF-15 was
analyzed as a continuous measure (per 1-SD increase) or
categorized into tertiles, with the low tertile as the refer-
ence. Restricted cubic spline and Kaplan-Meier curves
were used to illustrate the relationship between DNAm-
predicted GDF-15 and mortality. To mitigate potential
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reverse causality, the association between DNAm-predicted
GDF-15 and long-term all-cause mortality was assessed by
excluding participants who died within the first two years
of follow-up. For the association between DNAm-predicted
GDF-15 and cancer mortality, competing risk analysis using
the Fine-Grey hazard model was conducted, treating deaths
from non-cancer causes as competing events. To analyze the
association between DNAm-predicted GDF-15 and mortality
risk, we performed multivariable Cox regression, reporting
hazard ratios (HRs) and 95% confidence intervals (CIs).
Multivariable adjustments were made in two models. Model
1 was adjusted for age and sex. Model 2 was further adjusted
for race/ethnicity (non-Hispanic White, non-Hispanic
Black, Mexican American, others), education level (<high
school, high school equivalent, >college), smoking status
(smoker, non-smoker), and CHD. Stratified analyses were
conducted by sex (male/female), age (50-65 vs. >65 years),
race/ethnicity, education level, smoking status, and CHD.
Each subgroup analysis was adjusted for all covariates except
the stratification variable. Potential effect modification was
tested using log-likelihood ratio tests. As sensitivity analyses,
stratified analyses were further employed by adjusting for
hypertension, diabetes, chronic kidney disease, biological
aging evaluated by HorvathAge epigenetic clock tertiles, and
frailty based on model 2 to assess whether DNAm-predicted
GDF-15 offers prognostic value in cancer survivors beyond

its general association with aging-related mortality. All statis-
tical analyses were performed in R (version 4.4), with statis-
tical significance set at p-value <0.05 (two-tailed).

Results

Baseline characteristics. The baseline characteristics of
343 cancer survivors are presented in Table 1. Participants
in the high tertile of DNAm-predicted GDF-15 were older,
less likely to be well-educated, and more likely to be male
(p<0.05).

DNAm-predicted GDF-15 and mortality. A median
follow-up of 138 months (range 7-248 months) documented
239 all-cause deaths. Cancer survivors exhibited a positive
linear association between DNAm-predicted GDF-15 levels
and increased all-cause mortality risk (Figure 1A). Kaplan-
Meier analysis revealed that those in the low GDE-15 tertile
maintained the highest survival probability throughout
follow-up (log-rank p<0.001, Figure 1B). Multivariable
Cox regression demonstrated that each 1-SD increment
in DNAm-predicted GDF-15 conferred a 60% greater
mortality risk after age and sex adjustment, which remained
a 54% higher risk after further adjustment for race/ethnicity,
education level, smoking, and CHD. Participants in the high
GDF-15 tertile showed a 201% and 166% increased mortality
risk in model 1 and fully adjusted model, respectively (both

Table 1. Characteristics of the cancer survivors classified by the DNAm-predicted GDF-15 tertiles.

Total Low Middle High
Characteristics (n=330) (n=114) (n=114) (n=115) p-value
<958 959-1109 >1110
Age, mean (SD) 70.5 (9.7) 61.5 (6.5) 71.6 (7.1) 78.0 (6.9) <0.001
Age <0.001
50-65 103 (30.0) 80 (70.2) 15 (13.2) 8(7.0)
>65 240 (70.0) 34 (29.8) 99 (86.8) 107 (93.0)
Sex 0.048
Male 186 (54.2) 52 (45.6) 63 (55.3) 71 (61.7)
Female 157 (45.8) 62 (54.4) 51 (44.7) 44 (38.3)
Race and ethnicity 0.132
White 226 (65.9) 67 (58.8) 73 (64.0) 86 (74.8)
Black 47 (13.7) 19 (16.7) 16 (14.0) 12 (10.4)
Mexican American 50 (14.6) 23 (20.2) 17 (14.9) 10 (8.7)
Others 20 (5.8) 5(4.4) 8(7.0) 7(6.1)
Education level 0.032
<High school 107 (31.2) 29 (25.4) 38 (33.3) 40 (34.8)
High school or equivalent 80 (23.3) 25(21.9) 20 (17.5) 35(30.4)
College or above 156 (45.5) 60 (52.6) 56 (49.1) 40 (34.8)
Smoking status 0.091
Smoker 214 (62.4) 63 (55.3) 79 (69.3) 72 (62.6)
Non-smoker 129 (37.6) 51 (44.7) 35(30.7) 43 (37.4)
Coronary heart disease 0.129
Yes 44 (13.0) 10 (8.9) 14 (12.4) 20 (17.9)
No 294 (87.0) 103 (91.1) 99 (87.6) 92 (82.1)

Notes: Continuous variables: mean (SD); Categorical variables: number (95% CI). Abbreviations: SD-standard deviation; CI-confidence interval
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Pfor overall < 0.001
Pfor nonlinear = 0.743
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Figure 1. The association between DNAm-predicted GDF-15 and all-cause mortality risk in cancer survivors. A) The restricted cubic spline model
shows a linear association between DNAm-predicted GDF-15 level and all-cause mortality risk. The hazard ratio (solid line) was adjusted for age, sex,
race, education level, smoking status, and CHD. Shaded areas represent 95% CIs. The model was conducted with 3 knots. B) Kaplan-Meier survival
curves for the mortality outcome by tertiles of DNAm-predicted GDF-15. Abbreviations: DNAm-DNA methylation; CHD-coronary heart disease.

Table 2. Cox regression for the associations between DNAm-predicted GDF-15 and all-cause mortality.
HR (95% CI); p-value

Models Continuous Low tertile Middle tertile High tertile p-value trend
Crude 1.97 (1.75, 2.22); <0.0001 reference 2.93 (2.02, 4.23); <0.0001 6.07 (4.22, 8.74); <0.0001 <0.00001
Model 1 1.60 (1.36, 1.88); <0.0001 reference 1.79 (1.18, 2.73); 0.006 3.01 (1.90, 4.79); <0.0001 <0.00001
Model 2 1.54 (1.30, 1.83); <0.0001 reference 1.63 (1.06, 2.49); 0.025 2.66 (1.67, 4.24); <0.0001 0.00002

Notes: Model 1: Adjusted for age (continuous) and sex (male or female); Model 2: Further adjusted for race, education level, smoking status, and coronary
heart disease. Abbreviation: CI-confidence interval

Table 3. Cox regression for the associations between DNAm-predicted GDF-15 and long-term all-cause mortality.

HR (95% CI); p-value

Models Continuous Low tertile Middle tertile High tertile p-value trend
Crude 1.99 (1.75, 2.26); <0.0001 reference 3.25(2.19, 4.82); <0.0001 5.99 (4.07, 8.82); <0.0001 <0.0001
Model 1 1.64 (1.39, 1.95); <0.0001 reference 2.11 (1.36, 3.27); 0.0009 3.11 (1.92, 5.04); <0.0001 <0.0001
Model 2 1.54 (1.29, 1.84); <0.0001 reference 1.82 (1.17, 2.82); 0.0080 2.51 (1.55, 4.06); 0.0002 0.0002

Notes: Long-term mortality: excluded 23 subjects who died within the first two years of follow-up; Model 1: Adjusted for age (continuous) and sex (male or
female); Model 2: Further adjusted for race, education level, smoking status, and coronary heart disease. Abbreviation: CI-confidence interval

p-values for trend <0.0001), with the low tertile serving as
reference (Table 2).

After excluding 23 subjects who died within two years
of follow-up, the association between DNAm-predicted
GDF-15 and long-term all-cause mortality remained consis-
tent with the primary outcome (Table 3). Multivariable Cox
regression indicated that each 1-SD increase in DNAm-
predicted GDF-15 was associated with a 64% higher long-
term mortality risk in model 1, with this association persisting
at a 54% higher risk in model 2. For tertile comparisons, the
high GDEF-15 tertile had a 211% and 151% higher long-term
mortality risk compared to the low tertile in models 1 and 2,
respectively (both p-values for trend <0.0001).

Sixty-nine cancer deaths were documented. Kaplan-Meier
analysis demonstrated significantly higher cancer mortality
risk for participants in the high tertile of DNAm-predicted
GDF-15 compared to those in the low tertile (log-rank
p<0.001; Figure 2A). The cumulative incidence curves from
the competing risk analysis showed a graded increase in the
probability of cancer death across ascending GDF-15 tertiles
(Figure 2B). Cox regression analyses revealed that each 1-SD
increase in DNAm-predicted GDF-15 was significantly
associated with a 72% and a 39% increase in the risk of cancer
mortality in the unadjusted model and model 1, respectively.
In model 2, the magnitude and direction of the associa-
tion were consistent with those observed in model 1, with a
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Table 4. Cox regression for the associations between DNAm-predicted GDF-15 and cancer mortality.

HR (95% CI); p-value

Models Continuous Low tertile Middle tertile High tertile p-value trend
Crude 1.72 (1.38, 2.15); <0.0001 reference 2.99 (1.51, 5.91); 0.002 4.50 (2.27, 8.93); <0.0001 <0.0001
Model 1 1.39 (1.02, 1.90); 0.040 reference 1.96 (0.90, 4.25); 0.089 2.39(0.99, 5.73); 0.052 0.060
Model 2 1.38 (1.00, 1.90); 0.052 reference 1.94 (0.87,4.31); 0.103 2.43 (1.00, 5.93); 0.051 0.057

Notes: Model 1: Adjusted for age (continuous) and sex (male or female); Model 2: Further adjusted for race, education level, smoking status, and coronary

heart disease. Abbreviation: CI-confidence interval
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Figure 2. The association between DNAm-predicted GDF-15 and cancer mortality risk in cancer survivors. A) Kaplan-Meier survival curves for the
cancer mortality by DNAm-predicted GDF-15 tertiles. B) Cumulative incidence curves from the competing risk analysis of cancer mortality stratified
by DNA-predicted GDF-15 tertiles, with non-cancer death considered as a competing risk. Abbreviation: DNAm-DNA methylation.

marginal significance (p=0.052). A positive but non-signifi-
cant trend was observed across increasing GDF-15 levels in
model 2 (p-value for trend =0.057) when analyzed by tertiles
(Table 4).

Stratified analyses. Stratified analyses (Figure 3) indicated
that the observed association between DNAm-predicted
GDEF-15 and all-cause mortality was consistent across
various subgroups, including age, sex, ethnicity, educa-
tion level, and CHD. Smoking status showed effect modifi-
cation when unadjusted for multiple comparisons. After
Benjamini-Hochberg false discovery rate (FDR) correction
(q=0.05), none of the variables show statistically significant
effect modification.

Sensitivity analyses. After further adjusting for hyper-
tension, diabetes, chronic kidney disease, HorvathAge, and
frailty based on model 2, stratified analysis showed that the
association between DNAm-predicted GDF-15 and all-cause
mortality remained consistent across the majority of
subgroups, including cancer survivors without hypertension
(1.89, 1.37-2.61), without diabetes (1.58, 1.30-1.92), without
chronic kidney disease (1.62, 1.36-1.93), those with slower
epigenetic aging (HorvathAge low tertile, 1.46, 1.04-2.06;
middle tertile, 1.71, 1.16-2.52), and those with little or no

frailty (1.61, 1.35-1.93), with most interaction terms being
statistically nonsignificant except for education level and
chronic kidney disease. The subgroup of chronic kidney
disease should be considered exploratory due to the small
sample size (n=21) (Supplementary Table S1).

Discussion

This prospective cohort study of 343 cancer survivors
with a median follow-up of 138 months demonstrated that
the baseline DNAm-predicted GDF-15 was significantly
and positively associated with the risk of all-cause and long-
term all-cause mortality. The association remained consis-
tent in both unadjusted and fully adjusted models. Strati-
fied analyses indicated robust relationships across multiple
subgroups. A positive association was consistently observed
between DNAm-predicted GDF-15 and cancer mortality.
These results suggest that DNAm-predicted GDF-15 may
serve as a potential prognostic biomarker for the risk of
mortality in cancer individuals.

Our study showed a positive association between DNAm-
predicted GDF-15 and all-cause and long-term mortality in
cancer individuals. Similarly, Luo and Shen reported that
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Subgroup HR (95% CI) Pinteraction
Age ; 0.553
50-65 1.33 (0.91 - 1.95) -
>65 1.84 (1.54 - 2.19) i
Sex E 0.868
male 1.74 (1.43 - 2.13) | -
Female 1.74 (1.35 - 2.24) e
Race and ethnicity : 0.070
White 1.92 (1.58 - 2.35) E ——
Black 1.36 (0.94 - 1.95) e
Mexican American 3.32(1.44-7.64) : —_— >
Others 1.10 (0.64 - 1.88) —Il—
Education level E 0.094
Less than high school 1.49 (1.11 - 2.00) :—l—
High school or equivalent  2.32 (1.65 - 3.27) : ——
College or above 1.95 (1.55 - 2.46) E —
Smoking status : 0.031
smoker 1.57 (1.32 - 1.88) e
Non-smoker 2.63 (1.90 - 3.63) : —a—
Coronary heart disease E 0.109
Yes 1.36 (0.93 - 1.98) le—
No 1.90 (1.60 - 2.26) . .
005 1 2 3 4

Figure 3. Stratified analyses of the association between DNAm-predicted
GDF-15 and all-cause mortality risk. The forest plot illustrates the Cox
regression analysis of the DNAm-predicted GDF-15-mortality associa-
tion stratified by subgroups, adjusting for sex, age (50-65, >65), race,
education level, smoking, and CHD, except for each stratification vari-
able itself. Abbreviations: DNAm-DNA methylation; CHD-coronary
heart disease.

DNAm-predicted GDF-15 was significantly associated with
all-cause mortality risks among a population of NHANES
1999-2002 without disease-based selection (n=1,912;
including 267 cancer participants) [17]. However, Luo et
al. did not assess the association between DNAm-predicted
GDF-15 and the risks of long-term and cancer-specific
mortalities; in addition, our study was restricted to cancer
survivors (n=343), which extends previous findings by
validating DNAm-GDF-15 as an effective prognostic marker
in a distinct high-risk group and enhances generalizability.
DNAm-predicted GDF-15 was constructed using a subset
of 137 CpGs that linear combination best predicted plasma
GDE-15 protein level, and has been proven to be an effective
surrogate measure, with a reported correlation of 0.74 and
0.53 of plasma GDF-15 protein in the training and test data,
respectively [20]. The circulating DNAm-predicted GDF-15
and GDEF-15 protein are both related, yet distinct. Methyla-
tion patterns can vary in response to disease conditions,
aging, and environmental stressors, with DNA methylation at
specific CpG sites influencing gene expression. Consequently,
DNAm-predicted GDF-15 may offer a more consistent and
long-term assessment of physiological stress compared to
plasma GDEF-15 protein to some degree. Although few studies
have explored the association between DNAm-predicted
GDF15 and mortality, the associations between elevated
circulating GDF-15 and mortality risks [28-30], metabolic

dysfunctions, frailty, and biological aging [31-33] have been
established across diverse patient populations and clinical
settings. Our findings could be partly explained by the fact
that, as a stress-responsive cytokine, GDF-15 expression was
induced by oxidative stress, inflammation, and mitochondrial
dysfunction, leading to an increase in circulating GDF-15
concentration among cancer survivors with higher mortality
risk. Considering that GDF-15 is strongly associated with
frailty, a state of reduced stress tolerance to external stressors
[34] that may result from disease progression, and to mitigate
reverse causality, where elevated DNAm-predicted GDF-15
could merely reflect frailty-induced outcomes as a conse-
quence of the late stage of disease, we excluded participants
who died within two years of follow-up. DNAm-predicted
GDF-15 remained significantly associated with an increased
risk of long-term mortality. Notably, stratified analyses
showed consistent findings of the positive association
between DNAm-predicted GDF-15 and all-cause mortality
in cancer survivors without hypertension, diabetes, chronic
kidney disease, with slower epigenetic aging, and those with
little or no frailty, these support that the relationship between
DNAm-predicted GDF-15 and mortality risk in the cancer
population may involve broader mechanisms beyond merely
reflecting frailty status or aging-related decline.

We also found a trend of positive association between
DNAm-predicted GDF-15 and cancer mortality risk, which
has not been reported before. In the realm of cancer, a body
of clinical literature has proven plasma GDEF-15 to be an
effective prognostic marker of survival in various malig-
nancies. In a cohort of locally advanced NSCLC patients
undergoing chemoradiotherapy, elevated baseline plasma
GDF-15 levels demonstrated significant positive correla-
tions with larger gross tumor volumes and independently
predicted inferior relapse-free survival and overall survival
in multivariate analyses [14]. A meta study showed that
lung cancer patients with high GDF-15 levels were strongly
associated with poorer 3-year overall survival (OR 4.05, 95%
CI 1.92-8.51) compared to those with low levels, supporting
its role as a robust prognostic biomarker in cancer outcomes
[13]. In lower-grade glioma patients from the TCGA cohort,
elevated GDF-15 expression was found to be correlated with
aggressive clinical features and served as an independent
predictor of poor overall survival [11]. In both pancreatic
ductal adenocarcinoma patients and preclinical mouse
models, GDF-15 was reported to be a robust independent
prognostic biomarker, with rising levels correlating to
tumor burden, cachexia development, and poorer survival
outcomes, suggesting its utility for early detection and risk
stratification [12]. A possible explanation for the association
is that GDF-15 has protumorigenic properties, although the
precise mechanism needs further elucidation. On one hand,
it could mediate multiple downstream signaling cascades
involved in cancer progression. These include the oncogenic
pathways of PI3K/AKT and MAPK signaling, as evidenced
by phosphorylation of AKT1 and MAPK in prostate,
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cervical, and colorectal cancers, enhancing cell survival and
therapy resistance [35, 36], epithelial-mesenchymal transi-
tion and metastatic invasion through IGFIR and MAPK
phosphorylation, facilitating tumor dissemination in breast
cancer [37], and SMAD signaling in head and neck cancer
and glioblastoma, sustaining cancer stem cell populations
and conferring resistance to radiation therapy [38, 39]. On
the other hand, GDF-15 plays a critical role in suppressing T
cell migration, facilitating tumor immune evasion, creating
an immunosuppressive tumor microenvironment, and
leading to resistance to cancer immunotherapy [9]. Neutral-
izing GDF-15 has shown promising potential in sensitizing
resistant tumors to the immune checkpoint inhibitors
[8]. Additionally, GDF-15 has been reported to activate
the hypoxia-inducible factor-la (HIF-la) and facilitate
tumor angiogenesis [40]. However, a dual role of GDF-15
in tumorigenesis has been proposed [41, 42]. In contrast
to its oncogenic property, GDF-15 could also exhibit a
tumoral suppressor property, although the latter is reported
much less often than the former. For example, preclin-
ical animal studies have shown that the overexpression of
GDF-15 in cancer cell lines, including HCT116, MCEF-7,
PC-3, and glioblastoma, could inhibit tumor growth [43,
44]. Moreover, the expression of GDF-15 has been shown
to induce apoptosis in various cancer cells in vitro [45]. Its
antitumor and protumor effects may vary depending on
the type and stage of cancer [42]. In addition to its context-
dependent anti- and pro-tumorigenic functions, GDF15 has
been implicated in cachexia [46], a condition often viewed
as a consequence of either direct tumor progression or the
host’s aberrant homeostatic response to cancer-induced
systemic physiological alterations spanning the processes of
tumor initiation and progression [47]. As our study focused
on a pan-cancer population and lacked distinct cancer
staging, and given the diversity of cancer types, it was not
feasible to analyze the relationship for each specific cancer.
In addition, it should be noted that although the observed
hazard ratios for DNAm-predicted GDF-15 consistently
suggested a positive trend of elevated cancer mortality risk,
the 95% Cls in the adjusted models were wide and included
the null value at the lower bound (e.g., model 2, per 1-SD:
1.00-1.90), resulting in borderline p-values (p=0.052). The
lack of definitive statistical significance is likely attribut-
able in large part to a low event-per-variable ratio, thereby
limiting the statistical power of the multivariate models.
Therefore, the association between DNAm-predicted
GDEF-15 and cancer-specific mortality remains inconclu-
sive and should be validated through larger cohort studies
focusing on specific cancer types.

The current study has several strengths. We provide the
first evidence of a positive association between DNAm-
predicted GDF-15 and mortality risks among the cancer
population. The use of a prospective cohort based on a
non-institutional U.S cancer sample enhances generaliz-
ability. Detailed covariate data were considered as possible

confounders. Our study reported a positive association
between DNAm-predicted GDF-15 levels and long-term
mortality, which supports the potential role of GDF-15 in
predicting survival beyond its established link to frailty
and mitigates concerns about reverse causality. Several
limitations of the current study should be acknowledged.
First, DNAm-predicted GDF-15 was measured only once,
limiting insight into temporal fluctuations compared to
repeated assessments. Second, although cancer diagnoses
followed standardized protocols, self-reported data inher-
ently carry risks of recall bias and misclassification without
clinical verification. Third, cause-of-death information
from death certificates may not always be precise. Fourth,
the dataset lacked granular details on cancer types, stages,
and treatment records, which could potentially influence the
observed associations. Fifth, the independent association
between GDEF-15 and cancer mortality should be considered
tentative due to the low number of cancer-specific deaths.
In addition, despite our efforts to adjust for confounders,
residual or unmeasured factors may still have affected
the results. Finally, the current findings cannot establish
causality among cancer survivors. Future larger longitudinal
studies involving serial DNAm-predicted GDF-15 assess-
ments are required.

In conclusion, the current study provided preliminary
evidence that DNAm-predicted GDF-15, an alternative and
precise estimate of GDF-15 based on DNA methylation, is
an effective predictor positively associated with all-cause
and long-term all-cause mortality risks and showed a trend
of positive association with cancer mortality among cancer
survivors. Future larger longitudinal studies with serial
DNAm-predicted GDF-15 assessments are needed to verify
potential causal links.

Supplementary information is available in the online version
of the paper.
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