

1 NEOPLASMA accepted, ahead of print manuscript
2 Cite article as https://doi.org/10.4149/neo_2026_251018N437

3
4 **Running title:** Expression of α -SMA and PD-L1 in pleural mesothelioma

5
6 **Prognostic value and clinical significance of tumoral PD-L1 and stromal α -SMA expression in**
7 **diffuse pleural mesothelioma**

8
9 Yeqi Sun^{1,2}, Lan Li^{2,3}, Lei Cai³, Jihua Yang⁴, Jun Qian⁵, Fajiu Wang^{6,*}, Lifeng Wang^{1,*}

10
11 ¹Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University,
12 Shanghai, China; ²Department of Pathology, The Second Xiangya Hospital, Central South
13 University, Changsha, China; ³Shandong Provincial Hospital Affiliated to Shandong First Medical
14 University, Shandong, China; ⁴Department of Pathology, Dehong People's Hospital, Kunming
15 Medical University, Dehong, China; ⁵Department of Cardiothoracic Surgery, Dehong People's
16 Hospital, Kunming Medical University, Dehong, China; ⁶Department of Thoracic Surgery, Ningbo
17 No.2 Hospital, Ningbo, China

18
19 *Correspondence: wanglifeng@xinhuamed.com.cn; wfjwyt@163.com

20
21 [#]Contributed equally to this work.

22
23 **Received October 18, 2025 / Accepted January 19, 2026**

24
25 Diffuse pleural mesothelioma (PM) is a rare malignant neoplasm with an extremely poor prognosis.
26 Prognostic assessment remains challenging, highlighting the urgent need for reliable biomarkers to
27 guide precise and effective therapy. Programmed death ligand 1 (PD-L1) has been suggested as a
28 predictive biomarker for PM, but existing data are limited and controversial. Although advances
29 have been made in understanding cancer-associated fibroblasts (CAFs) within the PM tumor
30 microenvironment, their clinical and prognostic significance remains poorly elucidated. A
31 retrospective analysis of 51 pathologically diagnosed PM was performed. We evaluated
32 clinicopathological factors (including tumoral PD-L1, stromal α -SMA, and Ki-67 percentage by
33 immunohistochemistry) and analyzed their correlation with overall survival (OS) using
34 Kaplan-Meier and multivariate Cox regression. A total of 12 potential prognostic factors were
35 evaluated in the univariate analysis, and 6 factors were found to be significantly associated with a
36 poor prognosis in PM patients. Multivariate analysis identified histological classification, TNM
37 stage, and PD-L1 expression as independent prognostic factors in PM patients. Stromal α -SMA
38 positivity, a marker of poor prognosis, was significantly correlated with male, non-epithelioid
39 subtype, and a high Ki-67 index. Moreover, α -SMA positivity tended to show an increased
40 likelihood of PD-L1 expression ($p = 0.065$). The expression of tumor PD-L1 could serve as an
41 adverse prognostic factor for PM patients. Its potential association with tumor stromal α -SMA
42 expression warrants further investigation, particularly in the context of unmet needs in tumor
43 immunotherapy.

44
45 **Key words:** diffuse pleural mesothelioma; cancer associated fibroblasts; α -SMA; PD-L1; prognosis

46
47
48 Diffuse mesothelioma is a kind of rare and poorly recognized mesothelial cell-derived very
49 aggressive neoplasm, with characteristics of diffuse serosal spread and dismal prognosis [1]. It
50 typically originates from the pleura but can occasionally develop from peritoneum, pericardium,
51 tunica vaginalis and other organs [1]. Due to its highly mimicking to secondary pleural carcinoma,
52 it is a great challenge to initially diagnose by non-specific clinical manifestations and usual imaging
53 signs [1]. The final diagnosis of diffuse pleural mesothelioma (PM) should be made on histological
54 pattern and immunohistochemistry (IHC) information of a deep histologic sample [2, 3]. Once
55 confirmed, PM can be further categorized into three subtypes with roughly estimated prognostic
56 stratification: epithelioid (best), biphasic (intermediate), and sarcomatoid (worst) [2].
57 While the lack of relatively reliable predictive biomarkers has hampered timely intervention for PM,
58 which often presents at an advanced stage with extensive disease involvement, resulting in a median
59 overall survival of 10-12 months in untreated patients [4]. Even with treatment, with emphasizes its
60 palliative intent, the 5-year overall survival estimate is at best between 5% and 12% [5]. Thus,
61 despite advances in multimodal therapeutic approaches such as surgery, chemotherapy and
62 radiotherapy, its five-year mortality rate remains high [5]. The Molecular features of PM exhibit
63 prominent inter- and intratumor heterogeneity, primarily involving impairment in tumor suppressor
64 genes (e.g., BAP1, CDKN2A, MTAP and NF2), yet remain poorly understood [2]. Targeted therapy
65 is not yet available for this deadly disease, even though several molecular pathways have been
66 identified and biomarker-driven clinical trials have been conducted in PM to date [4, 6]. The recent
67 approval of nivolumab plus ipilimumab as frontline treatment in treatment-naïve adult patients with
68 non-epithelioid unresectable PM marks a significant milestone for the treatment of this disease [7].
69 However, only a minority of patients respond to this immunotherapy and current clinical
70 stratification relies largely on histological subtype [8]. Given these limitations, prognosis prediction
71 is a key step in the management and treatment stratification of PM. Identification of reliable
72 prognostic biomarkers for this disease is therefore urgently needed. For the time being, PD- L1
73 expression has failed to be a powerful predictive biomarker for ICIs treatment in PM, however, its
74 prognostic value was found by some studies [9-11]. Considering its central role in antitumoral
75 immune response evasion, this study aims to validate the relationship between PD-L1 expression
76 and survival outcome in PM tissues. Additionally, the tumor microenvironment (TME) has emerged

77 as a promising alternative predictive biomarker for immunotherapy [12]. Cancer-associated
78 fibroblasts (CAFs) are an abundant cell type in TME and have been shown to drive the progression
79 of several malignancies [13]. Notably, marked desmoplastic reactions-an indicator of CAFs
80 activation and accumulation-are frequently observed in PM [14]. This strongly implies that CAFs
81 may contribute to PM progression and immune escape, while their specific roles in mesothelioma
82 remain largely unknown.

83 Therefore, to identify reliable prognostic and therapeutically relevant biomarkers for PM, this study
84 examined the correlations between PM patient prognosis and the expression of CAFs marker
85 α -SMA in the fibrotic stroma, alongside PD-L1 and the cell proliferation marker (Ki- 67) in tumor
86 cells.

87

88 Materials and methods

89 This study was approved by the Institutional Review Boards at the Xiangya Second Hospital
90 Affiliated to Central South University School and conducted according to the Declaration of
91 Helsinki. Fifty-one cases of PM in our departmental archives with available clinical data,
92 hematoxylin and eosin-stained slides and formalin-fixed paraffin embedded (FFPE) blocks were
93 enrolled in this study. These patients were treated with core needle biopsy, local excision, surgical
94 resection of primary pleura occupied lesion between April 2007 and Augst 2021. The definitive
95 diagnosis was obtained based on routine pathological examination and confirmed by IHC. None of
96 the patients received any anti-tumor activities before. Pathologic parameters of all PM cases were
97 reassessed according with the 8th edition American Joint Commission on Cancer (AJCC) tumor
98 staging system. The time of follow-up was from initial diagnosis to Augst 2021 (range from 3-58
99 months).

100 IHC for α -SMA (Clone 1A4, dilution 1:100; Yongnian Tech), VENTANA PD-L1 (Clone SP263)
101 and Ki67 (Clone 1A1-D3, dilution 1:100; Wondfo) proteins were implemented on FFPE tumor
102 slides. Immunostaining of all markers was conducted on a Ventana Automated Immunostainer
103 (Ventana Medical Systems), following the manufacturer's protocols. IHC analysis was performed
104 according to descriptions in prior studies. Intratumoral fibroblast α -SMA expression ($\geq 1\%$) was
105 interpreted as a positive. Positive PD-L1 expression was defined as $\geq 1\%$ membranous staining in total
106 tumor cells. Ki67 proliferation index was calculated as the percentage of positive cells in total

107 tumor cells number and further classified as low ($\leq 25\%$) and high ($> 25\%$) positivity according to
108 previous reports [15].

109 Parameters were collected as potential prognostic factors including age (≤ 61 or > 61 years), gender
110 (male or female), smoking history (absence or presence), Eastern Cooperative Oncology Group
111 performance status (ECOG PS) scores (< 2 or ≥ 2 points), effusion (absence or presence), weight
112 loss (absence or presence), histopathological subtype (epithelioid or non-epithelioid), TNM (early
113 [I/II] or late [III/IV]), treatment (best supportive care [BSC] or adjuvant therapies). Adjuvant
114 therapies included chemotherapy, radiotherapy, immunotherapy, surgery, or the combination of any
115 treatment strategies above.

116 Univariate survival analysis utilized the Kaplan-Meier method and log-rank test. Overall survival
117 (OS) was measured from the date of a definitive diagnosis of PM to the date of death from any
118 cause or the last follow-up time. Variables with a p-value < 0.05 (two-sided) were considered
119 statistically significant. Variables with significant univariate associations, together with those
120 deemed clinically relevant or of research interest, were selected for further multivariate survival
121 analysis. Chi-squared test was performed to assess the relationships between α -SMA expression and
122 clinicopathological characteristics (including PD-L1 and Ki67 expression). Above all statistical
123 calculations were done using STATA 18.0 (stata corp., College Station, TX, USA).

124

125 **Results**

126 **Patient's clinicopathological characteristics.** Fifty-one PM patients were enrolled in this study,
127 with detailed clinical and pathological information summarized in Table 1. PD-L1 protein was
128 expressed on membrane of tumor cells in 19 cases. Positive α -SMA expression was observed in 32
129 cases. High Ki-67 expression was detected in 27 cases.

130 **Univariate analysis.** All 12 variables were enrolled in the Kaplan-Meier method and univariate
131 analysis. Six factors were significantly associated with the PM prognosis ($p < 0.05$, Table 2).
132 Favorable prognostic factors associated with prolonged survival included the epithelioid subtype,
133 early TNM stage, receipt of treatment, and minimal or low IHC expression of PD-L1, α -SMA, and
134 Ki-67. The survival curves of α -SMA and PD-L1 are presented in Figure 1.

135 **Multivariate analysis.** A total of 4 potential prognostic factors in PM were chosen for further
136 multivariate analysis (Table 2). The results of multivariate analysis showed that histopathological

137 subtype (HR=2.94; 95% CI=1.600-10.518; p=0.003), stage (HR=2.39; 95% CI=1.182-5.399;
138 p=0.017), and PD-L1 expression (HR=2.01; 95% CI=1.019-4.573; p=0.044) were independent
139 prognostic factors for PM.

140 **Relationship between stromal α -SMA expression and clinicopathological characteristics.**
141 Statistically significant correlations were identified between stromal α -SMA expression and gender
142 (P=0.046), histopathological subtype (p=0.013), and Ki67 index (p=0.003) (Table 3). Specifically,
143 α -SMA positivity was more frequently detected in male patients, non-epithelioid PM subtype, and
144 cases with a high Ki67 index. Moreover, stromal α -SMA-positive PM patients exhibited a trend
145 toward increased PD-L1 expression, though this association did not reach statistical significance
146 (p=0.065). Representative tissue sections having concurrent stromal α -SMA and tumoral PD-L1
147 expression in PM cases are provided in Figure 2.

148

149 **Discussion**

150 Existing models like the CALGB, despite effectiveness, are not commonly adopted due to they are
151 time-consuming nature and requirement for expensive equipment [11]. Hence, more accurate
152 prognostic information is needed in PM research. Currently, the established uniform prognostic
153 factors still mainly involve tumor stage and histology, as reaffirmed in this study. Furthermore, our
154 survival analysis demonstrated the overall survival significance of α -SMA, PD-L1 and Ki67 in PM
155 patients.

156 Over the past decades, no significant progress has been made in the treatment of PM aside from the
157 approval of the first chemotherapy-free regimen based on the dual ICI nivolumab plus ipilimumab
158 in non-epithelioid PM. Many investigated drugs, either alone or in combination regimen, have
159 failed to demonstrate efficacy. In this study, PD-L1 was detected by IHC in Tumor cells in 37.25%
160 of total cases, consistent with the reported high range of PD-L1 expression in PM [11]. Even if
161 different antibodies and cut-offs were adopted, this study confirmed PD-L1 positivity signifies a
162 poor prognosis in PM and serves as an independent prognostic factor [9-11]. Compared to the great
163 progress of immunotherapy in other solid tumors, the restricted therapeutic effect also reminds us
164 that much attention needs to be paid to overcome the immune resistance in most PM patients.

165 TME, particularly CAFs, represents a promising focus for understanding this resistance.
166 Chrisochoidou et al. have used co-cultures of patient-derived mesothelioma cell lines and lung

167 fibroblasts to observe that fibroblast activation is a self-propagated process, leading to the
168 generation of a fibrotic extracellular matrix in tumor stroma and triggering drug resistance in
169 mesothelioma cells [16]. However, the characteristics and roles of CAFs in PM progression remain
170 poorly understood. Until recently, Mathilakathu et al. found that using conditional medial from
171 CAFs could activate the MAPK signaling cascade in PM cell lines, which was accompanied by
172 changes in biological behavior and contributed to tumor progression [17]. Ries et al. demonstrated
173 that mesothelioma-associated CAFs with high expression levels of α -SMA promote the proliferation
174 and migration of PM cells via c-Met/PI3K and WNT signaling, but do not confer cisplatin
175 resistance [18]. In a cohort of 37 epithelioid PM cases, α -SMA-positive CAFs were also identified
176 as a marker of shortened OS but not associated with clinicopathological features [14]. Therefore,
177 α -SMA was used as the CAFs marker in this expanded cohort to evaluate its prognostic value across
178 all PM subtypes, including non-epithelioid. Our results observed α -SMA-positive PM patients
179 showed a dismal prognosis, although not an independent prognosis role. Moreover, it was revealed
180 that stromal α -SMA positivity was associated with male gender, non-epithelioid subtype, a high
181 Ki67 index and even a higher tendency for PD-L1 expression. These findings align with previous
182 reports linking PD-L1 expression to the sarcomatous and biphasic PM [19].

183 These findings prompt mechanisms consideration. First, PM comprises epithelioid, biphasic and
184 sarcomatoid subtypes with distinct epithelial-mesenchymal transition (EMT) phenotypes. Data
185 mining reveals that EMT-related genes are associated with survival in PM and are significantly
186 more expressed in non-epithelioid subtypes [20]. And non-epithelioid PM shows higher stromal
187 scores, which correlate with poorer survival [20]. Our study of close correlation between
188 α -SMA-positivity CAFs and both Ki67 index and the non-epithelioid PM further supports that
189 CAFs are prognostically more critical in non-epithelioid subtype. Thus, a CAFs-dominated fibrotic
190 microenvironment may be the principal driver of progression in non-epithelioid PM, whereas
191 tumor-cell-intrinsic alterations might play a more dominant role in epithelioid PM. Second, given
192 the relatively low mutation load and fewer neoantigens in PM, the initial anti-tumor immune
193 response is inherently limited [2]. This weak immunosurveillance may allow CAFs to play a more
194 dominant role in shaping the tumor immune microenvironment (TIME). Through direct cytokine
195 secretion as well as indirect signaling crosstalk with immune cells, activated CAFs foster an
196 immunosuppressive niche (e.g., upregulation of PD-L1 on tumor cells), thereby driving tumor

197 progression and immunotherapy resistance [21]. The observed trend between α -SMA positivity and
198 PD-L1 expression aligns with this mechanism and may help explain the particularly poor prognosis
199 associated with non-epithelioid PM subtype, in which CAF-driven fibrosis and TIME are especially
200 prominent. In sum, CAFs may play a more crucial role in the TME of non-epithelioid than
201 epithelioid PM, aiding in immune evasion and potentially influencing therapy outcomes. Therefore,
202 it is reasonable to incorporate the estimation of stromal CAFs in prognosis prediction and a
203 comprehensive investigation into the role of CAFs and immune status in PM.

204 Taken together, although some studies have questioned the reliability of PD-L1 for guiding therapy
205 selection, our findings confirm its role as an independent prognostic factor in PM. This underscores
206 the importance of further investigation into its prognostic utility to improve prognostic models and
207 optimize treatment strategies. Meanwhile, our finding also highlighted α -SMA-positive stromal
208 CAFs as clinically significant marker of poor prognosis and associated with non-epithelioid PM,
209 supporting their incorporation into future prognosis prediction. Therefore, a deeper exploration of
210 CAFs-immune interactions and the underlying mechanisms is essential to overcome therapeutic
211 resistance and uncover novel therapeutic targets.

212

213 Acknowledgments: This research was funded by National Natural Science Foundation Incubation
214 Project of Xinhua Hospital of Shanghai Jiao Tong University (FH2024G001), Natural Science
215 Foundation of Hunan Province (No.2022JJ40693) and Ningbo Top Medical and Health Research
216 Program (No.2022030208).

217

218

219 **References**

- 220 [1] CARBONE M, ADUSUMILLI PS, ALEXANDER HR, BAAS P, BARDELLI F et al.
221 Mesothelioma: Scientific clues for prevention, diagnosis, and therapy. CA Cancer J Clin
222 2019; 69: 402-429. <https://doi.org/10.3322/caac.21572>
- 223 [2] HUNG YP, CHIRIEAC LR. Molecular and Immunohistochemical Testing in Mesothelioma
224 and Other Mesothelial Lesions. Arch Pathol Lab Med 2024; 148: e77-e89.
225 <https://doi.org/10.5858/arpa.2023-0213-RA>
- 226 [3] HUSAIN AN, CHAPEL DB, ATTANOOS R, BEASLEY MB, BRCIC L et al. Guidelines
227 for Pathologic Diagnosis of Mesothelioma. Arch Pathol Lab Med 2024; 148: 1251-1271.
228 <https://doi.org/10.5858/arpa.2023-0304-RA>

229 [4] SAHU RK, RUHI S, JEPPU AK, AL-GOSHAH HA, SYED A et al. Malignant
230 mesothelioma tumours: molecular pathogenesis, diagnosis, and therapies accompanying
231 clinical studies. *Front Oncol* 2023; 13: 1204722. <https://doi.org/10.3389/fonc.2023.1204722>

232 [5] BERTIN B, ZUGMAN M, SCHVARTSMAN G. The Current Treatment Landscape of
233 Malignant Pleural Mesothelioma and Future Directions. *Cancers (Basel)* 2023; 15:
234 5808-5821. <https://doi.org/10.3390/cancers15245808>

235 [6] BOREA F, FRANCZAK MA, GARCIA M, PERRINO M, CORDUA N et al. Target
236 Therapy in Malignant Pleural Mesothelioma: Hope or Mirage? *Int J Mol Sci* 2023; 24:
237 9165-9190. <https://doi.org/10.3390/ijms24119165>

238 [7] HU ZI, GHAFOOR A, SENGUPTA M, HASSAN R. Malignant mesothelioma: Advances in
239 immune checkpoint inhibitor and mesothelin-targeted therapies. *Cancer* 2021; 127:
240 1010-1020. <https://doi.org/10.1002/cncr.33433>

241 [8] FENNELL DA, SEKIDO Y, BAAS P, HUSAIN AN, CURIONI-FONTECEDRO A et al.
242 Pleural mesothelioma. *Nat Rev Dis Primers* 2025; 11: 56.
243 <https://doi.org/10.1038/s41572-025-00640-3>

244 [9] INAGUMA S, LASOTA J, WANG Z, CZAPIEWSKI P, LANGFORT R et al. Expression of
245 ALCAM (CD166) and PD-L1 (CD274) independently predicts shorter survival in malignant
246 pleural mesothelioma. *Hum Pathol* 2018; 71: 1-7.
247 <https://doi.org/10.1016/j.humpath.2017.04.032>

248 [10] JIN L, GU W, LI X, XIE L, WANG L et al. PD-L1 and prognosis in patients with malignant
249 pleural mesothelioma: a meta-analysis and bioinformatics study. *Ther Adv Med Oncol* 2020;
250 12:1758835920962362. <https://doi.org/10.1177/1758835920962362>

251 [11] AVILÉS-SALAS A, CABRERA-MIRANDA L, HERNÁNDEZ-PEDRO N, VARGAS-LÍAS
252 DS, SAMTANI S et al. PD-L1 expression complements CALGB prognostic scoring system
253 in malignant pleural mesothelioma. *Front Oncol* 2023; 13: 1269029.
254 <https://doi.org/10.3389/fonc.2023.1269029>

255 [12] CALABRÒ L, BRONTE G, GROSSO F, CERBONE L, DELMONTE A et al.
256 Immunootherapy of mesothelioma: the evolving change of a long-standing therapeutic dream.
257 *Front Immunol* 2024; 14: 1333661. <https://doi.org/10.3389/fimmu.2023.1333661>

258 [13] RIMAL R, DESAI P, DAWARE R, HOSSEINNEJAD A, PRAKASH J et al.
259 Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. *Adv
260 Drug Deliv Rev* 2022; 189: 114504. <https://doi.org/10.1016/j.addr.2022.114504>

261 [14] OHARA Y, ENOMOTO A, TSUYUKI Y, SATO K, IIDA T et al. Connective tissue growth
262 factor produced by cancer-associated fibroblasts correlates with poor prognosis in
263 epithelioid malignant pleural mesothelioma. *Oncol Rep* 2020; 44: 838-848.
264 <https://doi.org/10.3892/or.2020.7669>

265 [15] PEZZUTO F, SERIO G, FORTAREZZA F, SCATTONE A, CAPORUSSO C et al.
266 Prognostic Value of Ki67 Percentage, WT-1 Expression and p16/CDKN2A Deletion in
267 Diffuse Malignant Peritoneal Mesothelioma: A Single-Centre Cohort Study. *Diagnostics
268 (Basel)* 2020; 10: 386. <https://doi.org/10.3390/diagnostics10060386>

269 [16] CHRISOCHOIDOU Y, ROY R, FARAHMAND P, GONZALEZ G, DOIG J et al. Crosstalk
270 with lung fibroblasts shapes the growth and therapeutic response of mesothelioma cells. *Cell
271 Death Dis* 2023; 14: 725. <https://doi.org/10.1038/s41419-023-06240-x>

272 [17] MATHILAKATHU A, WESSOLLY M, MAIRINGER E, UEBNER H, KREIDT D et al.
273 Cancer-Associated Fibroblasts Regulate Kinase Activity in Mesothelioma Cell Lines via

274 Paracrine Signaling and Thereby Dictate Cell Faith and Behavior. *Int J Mol Sci* 2022; 23: 275 3278. <https://doi.org/10.3390/ijms23063278>

276 [18] RIES A, FLEHBERGER D, SLANY A, PIRKER C, MADER JC et al. 277 Mesothelioma-associated fibroblasts enhance proliferation and migration of pleural 278 mesothelioma cells via c-Met/PI3K and WNT signaling but do not protect against cisplatin. 279 *J Exp Clin Cancer Res* 2023; 42: 27. <https://doi.org/10.1186/s13046-022-02582-0>

280 [19] PATIL NS, RIGHI L, KOEPHEN H, ZOU W, IZZO S et al. 281 Molecular and Histopathological 282 Characterization of the Tumor Immune Microenvironment in Advanced Stage of Malignant 283 Pleural Mesothelioma. *J Thorac Oncol* 2018; 13: 124-133. 284 <https://doi.org/10.1016/j.jtho.2017.09.1968>

285 [20] WU L, YOSHIHARA K, YUN H, KARIM S, SHOKRI N et al. 286 Prognostic Value of EMT Gene Signature in Malignant Mesothelioma. *Int J Mol Sci* 2023; 24: 4264. 287 <https://doi.org/10.3390/ijms24054264>

288 [21] ZHANG C, FEI Y, WANG H, HU S, LIU C et al. 289 CAFs orchestrates tumor immune 290 microenvironment-A new target in cancer therapy? *Front Pharmacol* 2023; 14: 1113378. <https://doi.org/10.3389/fphar.2023.1113378>

291 **Figure Legends**

292

293 **Figure 1.** Kaplan-Meier survival curves of α -SMA (a), PD-L1 (b) in PM patients.

294

295 **Figure 2.** Immunohistochemical co-expression of α -SMA and PD-L1 in PM subtypes. 296 Epithelioid subtype (magnification a-c 200 \times): a representative case (a) exhibiting concurrent expression of 297 cytoplasmic α -SMA in stromal fibroblast-like cells (b) and membranous PD-L1 in tumor cells (c). 298 Sarcomatoid subtype (magnification d-f 100 \times): a representative case (d) with simultaneous 299 expression of cytoplasmic α -SMA in stromal cells (e) and membranous PD-L1 in tumor cells (f).

301 **Table 1.** Demographic features of diffuse pleural mesothelioma patients.

Features	Pleural N (%)
Number of patients	51 (100)
Median age	61
Gender	
male	33 (64.71)
female	18 (35.29)
Smoking	
absence	23 (45.10)
presence	28 (54.90)
ECOG PS Score	
< 2	36 (70.59)
≥ 2	15 (29.41)
Effusion	
absence	10 (19.61)
presence	41 (80.39)
Weight loss	
absence	29 (56.86)
presence	22 (43.14)
Subtype	
epithelioid	35 (68.63)
biphasic	11 (21.57)
sarcomatoid	6 (11.76)
TNM	
early (I/II)	24 (47.06)
late (III/IV)	27 (52.94)
Treatment	
adjuvant therapies	13 (25.49)
BSC	38 (74.51)
Stromal α-SMA expression	
absence	19 (37.25)
presence	32 (62.75)
PD-L1	
TPS=0	32 (62.75)
TPS ≥ 1	19 (37.25)
Ki67	
≤ 25%	24 (47.06)
> 25%	27 (52.94)

302

303 **Table 2.** Univariate and multivariate analysis of parameters in diffuse pleural mesothelioma patients.

Variables (N=41)	Univariate analysis		p-value	Multivariate analysis		
	O/N*	Survival ^a (months)		HR	95%CI	p-value
Age (≤ 61 vs. > 61)	20/22 vs. 15/19	13.28 vs. 9.02	0.468			
Gender (male vs. female)	23/27 vs. 12/14	8.41 vs. 16.89	0.289			
Smoking (Yes vs. No)	19/22 vs. 16/19	8.76 vs. 14.25	0.451			
ECOG PS score (< 2 vs. ≥ 2)	22/28 vs. 13/13	13.67 vs. 6.22	0.061			
Effusion (Yes vs. No)	29/34 vs. 6/7	11.03 vs. 12.67	0.899			
Weight loss (Yes vs. No)	16/18 vs. 19/23	9.58 vs. 12.66	0.450			
Subtype (epithelioid vs. others)	22/28 vs. 13/13	15.03 vs. 3.28	0.000	4.103	1.600-10.518	0.003
TNM (Early vs. Late)	14/18 vs. 21/23	16.96 vs. 6.88	0.010	2.526	1.182-5.399	0.017
Treatment (Yes vs. No)	8/12 vs. 27/29	19.14 vs. 8.07	0.012			
α-SMA (Yes vs. no)	22/25 vs. 13/16	7.48 vs. 17.29	0.007	2.086	0.853-5.101	0.107
PD-L1 (TPS: 0 vs. ≥ 1)	21/25 vs. 14/16	15.24 vs. 5.15	0.023	2.159	1.019-4.574	0.044
Ki67(≤ 25% vs. > 25%)	14/18 vs. 21/23	15.80 vs. 7.79	0.042			

304 Notes: *O-observed death number; *N-total patient number; ^asurvival (months)

305 **Table 3.** Relationship between stromal α -SMA expression and clinical pathological characteristics
 306 in diffuse pleural mesothelioma patients.

Variables N=51	α -SMA presence N (%)	α -SMA absence N (%)	p-value
Age (years)			0.539
≤ 58	14 (43.75)	10 (52.63)	
> 58	18 (56.25)	9 (47.37)	
Gender			0.046
male	24 (75.00)	9 (47.37)	
female	8 (25.00)	10 (52.63)	
Smoking			0.405
absence	13 (40.62)	10 (52.63)	
presence	19 (59.38)	9 (47.37)	
ECOG PS Score			0.794
< 2	23 (71.88)	13 (68.42)	
≥ 2	9 (28.12)	6 (31.58)	
Effusion			0.869
absence	7 (21.87)	3 (15.79)	
presence	25 (78.13)	16 (84.21)	
Weight loss			0.909
absence	18 (56.25)	11 (57.89)	
presence	14 (43.75)	8 (42.11)	
Subtype			0.013
epithelioid	18 (56.25)	17 (89.47)	
non-epithelioid	14 (43.75)	2 (10.53)	
TNM			0.513
early (I/II)	14 (43.75)	10 (52.63)	
late (III/IV)	18 (56.25)	9 (47.37)	
PD-L1			0.065
TPS=0	17 (53.13)	15 (78.95)	
TPS ≥ 1	15 (46.87)	4 (21.05)	
Ki67			0.003
$\leq 25\%$	10 (31.25)	14 (73.68)	
$> 25\%$	22 (68.75)	5 (26.32)	

307

Fig. 1 [Download full resolution image](#)

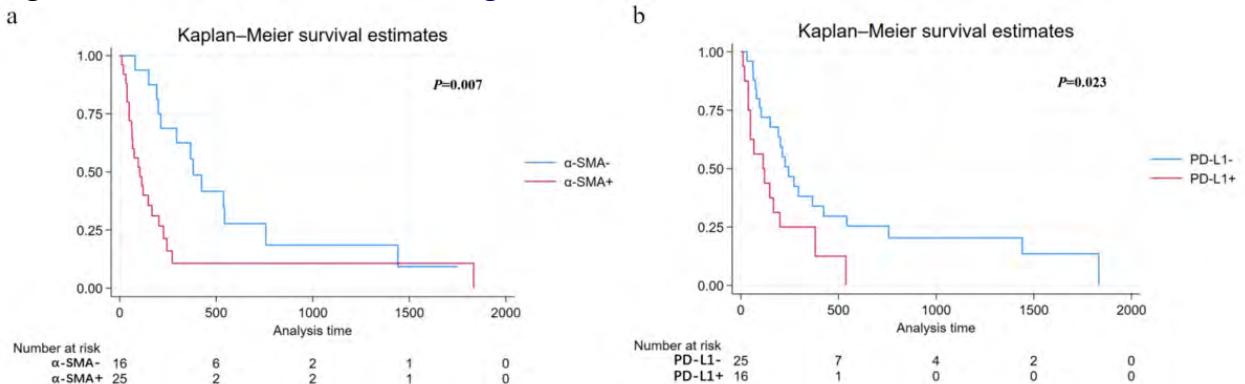
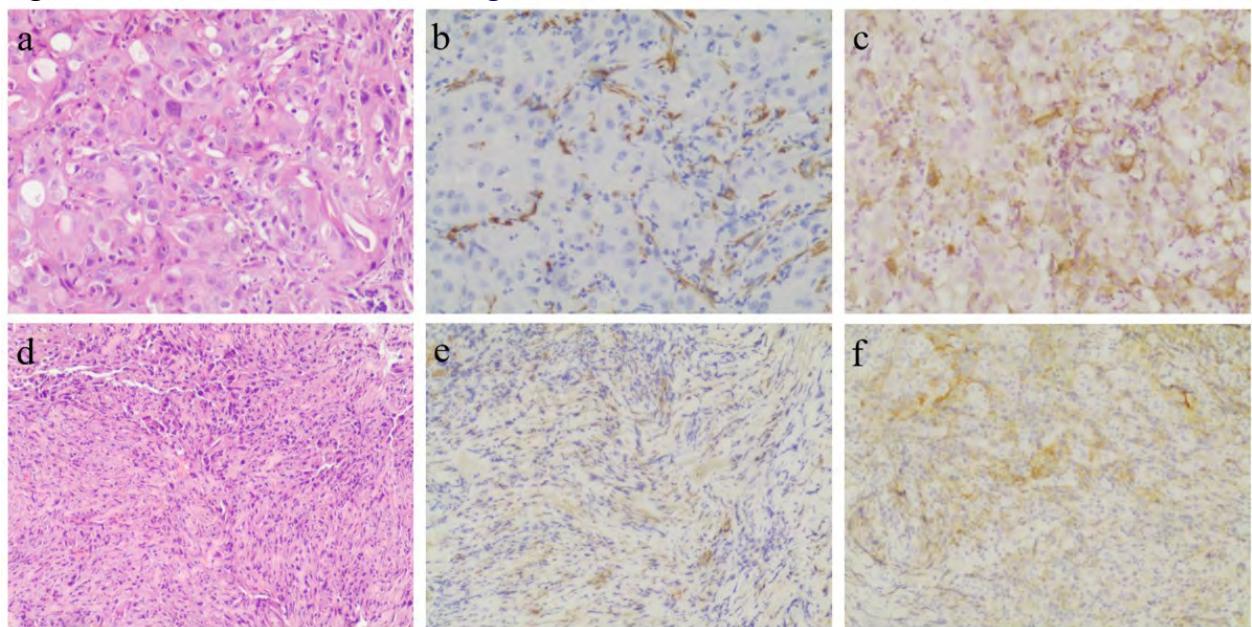



Fig. 2 [Download full resolution image](#)

