Menu

Detection of p53 gene mutation by using a novel biosensor based on localized surface plasmon resonance

R. Q. DUAN, J. L. YUAN, H. YANG, X. G. LUO, M. R. XI

Abstract:

Few studies to date have reported on the development and application of a nanobiosensor based on localized surface plasmon resonance (LSPR) for detecting gene mutations. This study aimed to develop a novel LSPR biosensor used for detecting p53 mutation. Nanosphere lithography was used to fabricate the silver nanoparticles. The DNA probe was designed to recognize the target sequence and immobilized on the chip surface by a covalent-coupling method using amine-group ligands. Synthetic oligonucleotides or PCR products were amplified from genomic DNA taken from blood samples and hybridized with the immobilized probe. Wild-type and mutant p53 was detected by measuring shifts in peak of LSPR extinction spectra. The low detection limit of the sensor for target sequence was 10 nM, and detection occurred over a wide dynamic range (10 nM - 10 μM). Importantly, the differences in measuring signal between wild-type and mismatched p53 DNA was significant, allowing for this sensor to effectively discriminate against single base mutations. In conclusion, we developed a biosensor with potential as a rapid, label-free, sensitive, and low-cost method for detecting p53 mutation. Our results suggest that such an LSPR-based biosensor provides an attractive alternative for clinical detection of genetic mutation.

Issue: 3/2012

Volume: 2012

Pages: 348 — 353

DOI: 10.4149/neo_2012_045

Pubmed

Shopping cart is empty