Aptamer-modified PLGA nanoparticle delivery of triplex forming oligonucleotide for targeted prostate cancer therapy
Abstract:
Presented study aimed to prepare A10 aptamer-modified poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles loaded with triplex forming oligonucleotides(TFO) for targeted prostate cancer therapy. We first synthesized a PLGA-PEG-Apt copolymer. The PLGA-PEG-Apt nanoparticles (NP-Apt) were loaded with TFO using double emulsion solvent evaporation method. Carboxy-fluorescein labeled TFO-NP-Apt, TFO-NP and TFO were prepared for cellular uptake experiments. Cell counting kit-8 (CCK-8) test was used to determine the ability of TFO-NP-Apt to inhibit LNCaP cell proliferation. RT-PCR and Western blot was conducted to analyze AR gene expressing. Then, a mouse model of prostate cancer was used to evaluate the anti-cancer effect of TFO-NP-Apt in vivo. We confirmed that the PLGA-PEG-Apt conjugation was successful. The TFO encapsulation efficiency and drug loading percentage were 46.1± 3.6% and 40.8±5.3%, respectively. TFO-NP-Apt showed a more efficient cellular uptake than TFO-NP or TFO in LNCaP cells. TFO-NP-Apt was significantly more cytotoxic than TFO-NP and TFO in the CCK-8 test (pTFO-NP-Apt silenced the AR gene better than unconjugated Apt, naked TFO, NP or saline. TFO-NP-Apt were more effective than TFO-NP, naked TFO, NP and saline at inhibiting prostate cancer growth in vivo (p