Frameshift mutations of OGDH, PPAT and PCCA genes in gastric and colorectal cancers
Abstract:
Metabolic reprogramming is a hallmark of cancer. However, genetic alterations in metabolism-related genes are largely unknown. The aim of this study was to identify whether somatic mutations in OGDH, PPAT and PCCA genes known to be involved in amino acid or nucleotide metabolism are mutated in gastric cancer (GC) and colorectal cancer (CRC). By public database search, we identified that OGDH, PPAT and PCCA genes harbor mononucleotide repeats that may serve as mutation targets in cancers with microsatellite instability (MSI). We analyzed the repeats for the presence of the mutations in 90 GCs and 141 CRCs using single-strand conformation polymorphism (SSCP) and samples of 10 patients with shifted bands were sequenced. We found frameshift mutations of OGDH (3 cases), PCCA (5 cases) and PPAT (2 cases) in the cancers. These mutations were exclusively detected in MSI-high (MSI-H), and not in MSI-low or MSI-stable (MSI-L/MSS) cancers. We also analyzed 16 CRCs for the presence of intratumoral heterogeneity (ITH) and found that one CRC harbored regional ITH for OGDH frameshift mutation showing very rare frequency of OGDH mutation ITH in colorectal cancer tissues. Our data indicate that amino acid/nucleotide metabolism-related genes OGDH, PPAT and PCCA acquire somatic mutations in MSH-H GCs and CRCs and that mutational ITH may occur in at least some of these tumors. Collectively, our results may extend our insight into the involvement of amino acid/nucleotide metabolism in the pathogenesis of cancer for, in particular, MSI-H GCs and CRCs.