Comprehensive analysis of the PTPN13 expression and its clinical implication in breast cancer
- Free access
Abstract:
Protein tyrosine phosphatases non-receptor 13 (PTPN13) could be a potential biomarker in breast cancer (BRCA), but its genetic variation and biological significance in BRCA remain undefined. Hereon, we comprehensively investigated the clinical implication of PTPN13 expression/gene mutation in BRCA. In our study, a total of 14 cases of triple-negative breast cancers (TNBC) treated with neoadjuvant therapy were enrolled, and post-operation TNBC tissues were collected for next-generation sequencing (NGS) analysis (422 genes including PTPN13). According to the disease-free survival (DFS) time, 14 TNBC patients were divided into Group A (long-DFS) and Group B (short-DFS). The NGS data displayed that the overall mutation rate of PTPN13 was 28.57% as the third highest mutated gene, and PTPN13 mutations appeared only in Group B with short-DFS. In addition, The Cancer Genome Atlas (TCGA) database demonstrated that PTPN13 was lower expressed in BRCA than in normal breast tissues. However, PTPN13 high expression was identified to be related to a favorable prognosis in BRCA using data from the Kaplan-Meier plotter. Moreover, Gene Set Enrichment Analysis (GSEA) revealed that PTPN13 is potentially involved in interferon signaling, JAK/STAT signaling, Wnt/β-catenin signaling, PTEN pathway, and MAPK6/MAPK4 signaling in BRCA. This study provided evidence that PTPN13 might be a tumor suppressor gene and a potential molecular target for BRCA, and genetic mutation and/or low expression of PTPN13 predicted an unfavorable prognosis in BRCA. The anticancer effect and molecular mechanism of PTPN13 in BRCA may be associated with some tumor-related signaling pathways.
Received date: 11/17/2022
Accepted date: 01/31/2023
Ahead of print publish date: 02/23/2023
Issue: 2/2023
Volume: 70
Pages: 188 — 198
Keywords: PTPN13, BRCA, mutation, TCGA, prognosis
Supplementary files:
N1110 Suppl Figure Legends-TE1.docx
N1110 Suppl FigS1-TE1.tif
DOI: 10.4149/neo_2023_221117N1110